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Abstract

We propose and analyze modular stable matching rules as a candidate for a

foundational framework to address issues of social welfare and equity in the sta-

ble matching model. We present two characterizations for modular stable matching

rules that reveal the ordinal content of optimizing a modular function under the

stability constraint, and present several examples. Then, we propose a new class of

equity notions and characterize the class of modular stable matching rules that com-

ply with these notions. Our analysis indicates that modular matching rules are both

structured and rich enough to implement a wide range of objectives.
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1 Introduction

An important feature of two sided matching markets is that there typically exist many

stable matchings. These matchings form a lattice according to the group preferences of

agents on either side, with the so-called polarity property that says if all agents on one

side prefer one matching to another than the opposite is true for agents on the other side.

Since the pioneering work of Gale & Shapley (1962), attention has mostly rested on the

extremal matchings, optimal for one side pessimal for the other, mainly for the remark-

able properties they own. The Deferred Acceptance Procedure finds the optimal matching

very efficiently. The inequity at the extremal matchings, on the other hand, has surely

generated interest for compromise solutions but, informational or computational con-

cerns aside, the “middle” has turned out and remained a challenging matter. We believe

that existing studies in several disciplines have proven that the breadth of possibilities

calls for a foundational framework to address issues of social welfare and equity in the

stable matching model. We propose and analyze the modular stable matching rules as

a candidate to form such a framework mainly due to their analytical tractability along

with clarity and richness.

Non-extremal stable matchings have been on the agenda for a long time. There

is now a list of solutions that have been put forward, some on geometric ground oth-

ers optimizing one or another social objective. These solutions that we will critically

review have more frequently been looked at on computational aspects. Our approach

is at a general level that establishes at the outset an equivalence between an ordinal

condition and additive optimization on the lattice of stable matchings. This equivalence

charts out a domain where the correlates of ordinal criteria selected for equitability or

social welfare appear as weights in optimization and vice versa. We call convexity the
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ordinal condition in the equivalence and call the domain modular. Convexity involves

preferences and requires that stable “mixtures” of matchings in a solution to also be in

the solution. The modular domain is fully wide, separable across agents, and allows for

computationally efficient optimization.

To introduce the framework, consider a society consisting of equal numbers of men

and women. A matching (marriage) problem is a preference profile in which each agent

has preferences over the opposite party. A matching uniquely assigns each man to a

woman. Our primitive objects are matching rules that associate a nonempty set of match-

ings with each problem. The set of associated matchings can be thought of as a shortlist

from which a final choice is to be made, the matchings that are assigned positive proba-

bility in a lottery, or the matchings used in a rotation scheme that, for example, specifies

the periodical job assignments to the employees throughout their employment.

The central robustness criterion for a matching is stability, which requires that there

is no unmatched man-woman pair who prefer each other to their assigned mates. In

addition to requiring that a matching rule chooses only stable matchings, we impose

invariance under stability, which requires the matchings chosen from two different prob-

lems be the same unless these problems induce different sets of stable matchings. We

refer to these matching rules as stable matching rules.

Modularity of a stable matching rule requires the chosen matchings be the ones

that optimize an explicit objective function, which is restricted to be modular by using

the lattice structure of stable matchings for each problem. As demonstrated by several

studies in the literature, formulating social objectives in the form a modular function

provides analytical and computational tractability along with clarity and richness. Here,

we provide several examples and results demonstrating that a wide range of objectives
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can be implemented through these rules. As for analytical tractability, it follows from

Proposition 4 together with the classical findings by Picard (1976) that optimizing a

modular function over stable matchings boils to down to finding the minimum cuts in

a properly defined flow network. The latter problem has been extensively studied and

known to be solvable efficiently.1

The matching rules used in the literature can roughly be classified into two groups.

In the first group, we can count the ones that choose the stable matchings optimizing

an explicitly given objective function, which can be interpreted as a measure of social

welfare or fairness–such as the utilitarian objective that seeks to maximize sum of in-

dividual utilities.2 As discussed in Section 2.1, these rules typically violate invariance

under stability, since the objective functions in question are formulated by using agents’

utilities/rankings over each other, independent of whether there is a stable matching in

which these agents are matched or not. In the second group, we consider the rules whose

formulations are not based on optimization of an explicitly given objective function, but

formulated by directly using the mathematical structure of the stable matchings,3 and

thus satisfy invariance under stability. Here, we provide a synthesis of these two groups

of rules, in that modular stable matching rules have clear underlying objectives formu-

lated in a tractable mathematical form, and satisfy invariance under stability.

1See for example Picard & Queyranne (1980), Irving, Leather & Gusfield (1987), and Henzinger, Noe,
Schulz & Strash (2020). More generally, Grötschel, Lovász & Schrijver (1981) show that minimizing a
submodular function over a lattice family can be done in oracle-polynomial time via the ellipsoid algo-
rithm.

2For other examples, one can count, minimum regret stable matchings, egalitarian stable matchings, the
minimum weight stable matchings, sex-equal stable matchings, rank maximal stable matchings, and balanced
stable matchings. For the related definitions we refer the reader to Manlove (2013, Chapter 1.3), Gusfield
& Irving (1989), and the references therein.

3In Examples 1-3, we present three of such matching rules introduced by Teo & Sethuraman (1998),
Cheng (2010) and Cheng, McDermid & Suzuki (2016).
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In our analysis, we provide two characterizations for modular stable matching rules

that reveal the ordinal content of optimizing a modular function under the constraint of

stability. Thus, we provide testable conditions to verify if the observed choice of stable

matchings in a society comply with optimization of a modular function. Additionally,

these results guide us about normative qualitative criteria that one may consider to

adopt a modular stable matching rule. On the technical side, we deepen and use the

connection between the stable matchings lattice and the rotations poset (Irving & Leather

1986), which is used in computer science to design efficient matching algorithms, but

seems to be overlooked in economics.

Our first axiom, convexity, requires that for each problem and for a given pair of

matchings that are chosen by the rule, if one can form a stable matching by assigning

all the agents to one of their mates in the given pair, then this newly formed stable

matching should have been chosen as well. To introduce the second axiom, suppose that

we transform a given problem–the preferences of the agents–such that all the agents

move their mates in the matchings chosen by the rule to the top of their preferences

by preserving the relative rankings elsewhere. Our independence of irrelevant rankings

requires that if a matching that is stable in the original problem remains stable in this

transformed problem, then it must be one of the matchings chosen by the rule in the

initial problem.

In the second part of the paper, we propose a new equity notion that is based on

the notion of the “median attainable mate”. To introduce this notion, consider an agent

i and all the agents who are attainable for i in the sense that for each such agent there

exists a stable matching in which i is assigned to him or her in the given problem. Next,

from among the agents who are attainable for i, consider the one(s) with (a) median
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rank.4 The median attainable mate for agent i is the (more preferred) attainable agent

who has the lower attainable median rank. A matching rule satisfies equity undominance

if for each problem, whenever a matching is chosen, there is no other stable matching

in which each agent is assigned to a mate who is either the same or closer to agent’s

median attainable mate than compared to agent’s mate at the chosen matching.

In Section 4, we present a simple problem in which there is a stable matching that

assigns all the agents to their unique median attainable mates. However, several stable

matching rules from the literature fail to choose this matching, and thus violate equity

undominance. Then, in Theorem 2, we characterize the class of modular stable matching

rules that satisfy equity undominance. The notion of equity undominance and Theorem

2 can be directly generalized by replacing median attainable mates by “ideal mates”

as defined in Example 5. Our discussion in this part of the paper demonstrates that

studying modular stable matching rule opens new avenues through which the issues of

equity can be fruitfully analyzed. As for the many-to-one and many-to-many matchings,

the set of stable matchings forms a distributive lattice under suitable restrictions.5 These

findings together with the connection provided by Blair (1984)6 indicate that our results

can be extended into more general matching contexts that are rich with market-design

applications.

4If there is an even number of attainable agents for i, then there are two such agents.
5Alkan (2001) and Alkan & Gale (2003) show that in the context of many-to-one and many-to-many

matchings, the distributivity of the stable matchings lattice is guaranteed by strengthening the substi-
tutability of the choice functions with size monotonicity (called law of aggregate demand by Hatfield &
Milgrom (2005)). Faenza & Zhang (2022) study algorithms for optimizing a modular function over the
set of stable matchings in these models where preferences are replaced with choice functions.

6Who shows that for every distributive lattice, there is a marriage problem with a stable matchings
lattice that is order-isomorphic to the given distributive lattice.
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2 Modular Stable Matching rules

2.1 Stable matching rules

Let M be a set of n men and W be a set of n women. Each m ∈ M has preferences over W

and each w ∈ W has preferences over M . Let N = M∪W , then preferences of each agent

i ∈ N is represented by a strict ordering, which is denoted by �i, i.e. �i is complete,

transitive, and asymmetric. Let Pi denote the set of all possible preference relations for

agent i, and P = ×i∈NPi denote the set of all possible preference profiles. We denote a

generic preference profile by �. A matching is a one-to-one function μ : M∪W → M∪W

such that for each (m,w) ∈ M × W , we have μ(m) ∈ W , μ(w) ∈ M , and μ(m) = w if

and only if μ(w) = m.

A matching μ is stable at a problem � ∈ P if there is no blocking-pair (m,w) ∈

M × W such that m �w μ(w) and w �m μ(m). Let S(�) denote the set of all stable

matchings at a given preference profile (problem) � ∈ P . We often use S instead of

S(�) if the problem that is referred to is clear from the context. Let BM denote the

men-wise better than relation over S, which are defined as follows: For each distinct

μ, μ′ ∈ S, μ BM μ′ if and only if for each m ∈ M , μ(m) �m μ′(m) or μ(m) = μ′(m).

The women-wise better than relation BW is defined similarly. A matching rule is a

mapping π that associates each problem � ∈ P with a nonempty set of matchings π(�).

Definition. A stable matching rule π is a matching rule that satisfies the following two

conditions:

Stability: For each problem � ∈ P , π(�) ⊂ S(�).

Invariance under stability: For each �,�′∈ P , if S(�) = S(�′) then π(�) = π(�′).
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Stability requires the matchings chosen for each problem be stable. Invariance un-

der stability requires the matchings chosen from two different problems be the same

unless these problems induce different set of stable matchings. Put differently, for a sta-

ble matching rule the set of stable matchings associated with each problem provides

the relevant information to operate. Our Examples 4-7 demonstrate that to formulate

an objective function whose optimization leads to a stable matching rule that satisfies

invariance under stability, the critical notion is “attainable mates”. That is, a man and a

woman are attainable for each other in a given problem, if there exists a stable matching

in which they are matched to each other.

As noted in the introduction, several matching rules in the literature are formulated

as to choose the stable matchings that optimize an objective function, which can be

interpreted as a measure of social welfare or fairness. As a common theme in all of these

rules, the objective function to be optimized is formulated via agents’ utilities/rankings

over each other, independent of them being attainable or not. Therefore, they all fail

to satisfy invariance under stability. To see this, let � be a problem and consider the

problem �′ that is obtained from � such that agents’ attainable mates are moved to top

of their preferences by preserving the relative rankings elsewhere. It is easy to verify that

the associated set of stable matchings remains the same. However, since � and �′ can be

distinct, optimization of an objective function based on agents’ utilities over each other

for � and �′ might result in different stable matchings. As demonstrated for the sex-

equal stable matchings in Example 7, to remedy violation of invariance under stability,

one needs to replace the use of agents’ rankings with their “attainable rankings”.

There is a another class of matching rules in the literature whose formulations

are not explicitly based on optimization of an objective function, but are built on the
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exquisite geometric structure of stable matchings. That is, for each pair of stable match-

ings μ and μ′, consider μ ∨ μ′ (μ ∧ μ′) that maps each man to his best (worst) mate

among the women he is matched to at μ or μ′; it turns out that both μ ∨ μ′ and μ ∧ μ′

are stable matchings as well, which in particular implies that the pair 〈S,BM〉 forms a

distributive lattice.7 Next, we present three examples whose formulations are based on

the structure of the stable matching lattice, satisfy invariance under stability, and thus

form stable matching rules.

Example 1 (Median stable matchings). Let � be a problem with K stable matchings.

For each man m, arrange his mates from these K stable matchings from his most pre-

ferred mate to his least preferred one. Let wk(m) denote the k-th woman in this sorted

list, where the same woman can be counted multiple times. For each k ∈ {1, . . . , K},

define μk : M ∪ W → M ∪ W such that μk(m) = wk(m) for each m ∈ M . Teo & Sethu-

raman (1998) show that μk is a stable matching. Then, they define the median stable

matching(s) as μ(K+1)/2 when K is odd, and μK/2 and μ(K/2)+1 when K is even.8

Example 2 (Median of the stable matchings lattice). Consider the undirected graph

associated with the stable matching lattice 〈S,BM〉, in which each μ ∈ S is a vertex and

for each μ, μ′ ∈ S, μ and μ′ are adjacent if there is no μ′′ ∈ S with μ BM μ′′ BM μ′.9 For

each μ, μ′ ∈ S, the distance between μ and μ′ is the length of (the number of edges on)

the shortest path (a.k.a. geodesic) between μ and μ′ in this graph. Cheng (2010) analyzes

stable matchings that are median(s) of the stable matchings lattice whose total or average

distance from all other stable matchings is the least. She shows that when n is odd, the

7Knuth (1976), pp. 92-93, attributes the discovery of this lattice structure to J. H. Conway.
8The existence of (generalized) median stable matchings has been studied in other settings including:

one-to-one matching with wages (Schwarz & Yenmez 2011), the college admissions model with responsive
preferences (Klaus & Klijn 2006a, Sethuraman, Teo & Qian 2006), the roommates problem (Klaus & Klijn
2010), many-to-many matching markets with contracts (Chen, Egesdal, Pycia & Yenmez 2016).

9This graph is called the (undirected) Hasse diagram of 〈S,BM 〉.
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median stable matching is the unique median of the stable matchings lattice and when

n is even, a stable matching μ is a median of the stable matchings lattice if and only if μ

is between the median stable matchings according to BM , i.e. μ(K/2)+1 BM μ BM μK/2.

Example 3 (Center stable matchings). Cheng, McDermid & Suzuki (2016) formulate

center stable matching(s) as the one(s) whose maximum distance (as described in Ex-

ample 2) from any other stable matchings is the least. They provide a characterization

of all center stable matchings, and show that a (specific) center stable matching can be

computed in polynomial time.

2.2 Modularity

The main structural restriction that we would like to impose on a stable matching rule

is modularity. Modularity requires optimization of an explicit objective function that is

restricted in a specific way via the lattice structure of stable matchings. That is, for a

given problem �, let F : S(�) → R be an assessment function that attaches a value

F (μ) to each stable matching μ ∈ S(�). Then, F is modular if for each μ, μ′ ∈ S(�),

F (μ) + F (μ′) = F (μ ∨ μ′) + F (μ ∧ μ′). (1)

Note that (1) can rewritten as F (μ) − F (μ ∧ μ′) = F (μ ∨ μ′) − F (μ′). Then, the simple

intuition behind modularity is as follows. The change from μ ∧ μ′ to μ corresponds to

a group of men being matched to better women; the effect of this change should be

the same if the change was made while another group of men were matched to better

women (at μ′) compared to their mates at μ ∧ μ′.
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Definition. Let π be a stable matching rule. Then, π is modular if for each problem �,

there exists a modular F : S(�) → R such that π(�) is the set of stable matchings that

minimize F , that is π(�) = argminμ∈S(�)F (μ).

As another salient class of assessment functions, we can consider the ones that can

be represented in additively separable form
∑

i∈N Fi(μ(i)). This representation renders

the direct interpretation that the social value of a stable matching is obtained by adding

Fi(μ(i)) for each agent i, which assesses the social value of matching agent i with μ(i).

For example, imagine that a matching determines the partnership relation which can

be between a senior and junior employee, or two teams running a joint project at the

intersection of their areas of expertise. Then, the social value of matching agent i with

μ(i) might be determined by the productivity of agent i when matched with μ(i). This

formulation disallows complementarities, in the sense that the social value of matching

agent i with μ(i) is the same regardless of other agents’ matches. On the other hand,

it follows from the findings of Picard (1976) and Irving, Leather & Gusfield (1987)

that a stable matching optimizing such a given assessment function can be computed

efficiently. In Proposition 1, we show that an assessment function is modular if and only

if it can be represented as the sum of agents’ individual assessment functions defined for

each agent over his/her set of attainable mates. Formally, let � be a given problem, then

a man m and a woman w are attainable for each other if μ(m) = w for some μ ∈ S(�).

For each i ∈ N , let Ai denote the set of attainable agents for i.

Proposition 1. Let �∈ P be a problem and F : S(�) → R be an assessment function.

Then, F is modular if and only if for each i ∈ N , there exists Fi : Ai → R such that

F (μ) =
∑

i∈N

Fi(μ(i)) for each μ ∈ S(�).
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Here, we prove the if part of the statement. Suppose that for each μ ∈ S(�), we

have F (μ) =
∑

i∈N Fi(μ(i)), where Fi : Ai → R. To see that π is modular, let i ∈ N .

Since for each μ, μ′ ∈ S(�), we have {(μ ∨ μ′)(i), (μ ∧ μ′)(i)} = {μ(i), μ′(i)}, we obtain

that {Fi((μ ∨ μ′)(i)), Fi((μ ∧ μ′)(i))} = {Fi(μ(i)), Fi(μ
′(i))}. It directly follows that Fi is

modular for each agent i, and thus F is modular since it is the sum of these modular

functions. The proof of the only if part, which uses the rotations poset, is presented as

Lemma 4 in Section 6.1.

Next, we present several examples to demonstrate the relevance, generality, and

the possible limitations of the modular stable matching rules. The rules in these ex-

amples are based on aggregating agents’ attainable rankings. That is, for each m and

w who are attainable for each other, RankA
m(w) (RankA

w(m)) is the rank of w (m) in

�m |Am (�w |Aw), which is obtained by restricting �m (�w) to the women (men) who

are attainable for m (w).

Example 4 (Maximizing total attainable ranks). In the vein of utilitarian welfare mea-

sures, it may be reasonable to evaluate each stable matching according to the sum of

agents’ attainable ranks in the matching. That is, for each problem �, let π(�) be the

set of stable matchings that maximize
∑

mw∈μ(RankA
m(w) + RankA

w(m)). In Lemma 1 of

Section 6.1, we show that this sum is constant among all stable matchings, and therefore

does not differentiate any stable matching from the others.

Example 5 (Minimizing total spread from the ideals). For each agent i ∈ N , from

among the agents who are attainable for i, let I(i) be the ideal partner for i in the sense

that assigning i to I(i) makes agent i reach the welfare level that is found ideal for him.

We allow two different agents have the same ideal partner. For a given stable matching μ,

we can measure the spread from the ideal for agent i by |RankA
i (μ(i)) − RankA

i (I(i))|.
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Then, consider the stable matching rule π choosing the set of stable matchings that

minimize the total spread from the ideals. That is, for each problem �, let π(�) be the

set of matchings that minimizes
∑

i∈N |RankA
i (μ(i)) − RankA

i (I(i))|. It directly follows

from Proposition 1 that π is modular.

Example 6 (Minimizing total spread from attainable medians). We may add further

structure into the previous example as follows. For each agent i, from among the agents

who are attainable for i, consider the one(s) with (a) median rank. Note that if there is

an odd number of attainable agents for i, then there is a unique attainable agent with

this property, otherwise there are two such agents. Let medA
i be the (more preferred)

attainable agent with the lowest attainable median rank, i.e. RankA
i (medA

i ) = b|Ai|/2c.

Suppose that medA
i is viewed as the ideal partner for i. Then, consider the stable match-

ing rule π choosing the set of stable matchings that minimize the total spread from the

median. That is, for each problem �, let π(�) be the set of matchings that minimizes
∑

i∈N |RankA
i (μ(i)) − RankA

i (medA
i )|. Alternatively, one can also consider the stable

matching rule choosing the set of stable matchings that maximize the total spread from

the median. It is easy to verify that in this rule the extremal matchings are chosen at

every problem, possibly together with other stable matchings. It follows from Gusfield

(1987)10 that identifying the set of attainable mates is a polynomial task. Then, by using

the findings of Irving, Leather & Gusfield (1987), one can show that a stable matching

minimizing the total spread from median can be computed in polynomial time, even in

the absence of the oracle.11

10Gusfield (1987) shows that a representation for the rotation poset, 〈R,→〉 as denoted in Section
6.1, can be constructed in O(n2) time. Our discussion in Section 6.1 will clarify the connection between
attainable mates and the rotation poset.

11It follows from Irving, Leather & Gusfield (1987)[Theorem 5.2] that optimizing an additive function
over the rotation poset can be computed in O(n2) time. Since, our Lemma 2 in Section 6.1 shows that
a modular assessment function can be represented as an additive function over the rotation poset, the
conclusion follows.
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Example 7 (Minimizing the difference between total attainable ranks). As a coun-

terpart of the sex-equal stable matchings (Gusfield & Irving 1989), consider the stable

matching rule π choosing the set of attainable sex-equal stable matchings that minimize

the absolute value of the difference between each sides’ total attainable ranks. That is,

for each problem �, let π(�) be the set of matchings that minimizes |
∑

m∈M RankA
m(μ(m))−

∑
w∈W RankA

w(μ(w))|. We will show that this stable matching rule is not modular.

3 Axioms and characterizations

3.1 Convexity

We present two characterizations for modular stable matching rules revealing the ordi-

nal content of optimizing a modular function. Our first axiom is convexity, which requires

that for a given pair of stable matchings that are chosen by the rule at a problem, if one

can form a “mixture” stable matching by assigning agents to one of their mates in the

given pair, then this newly formed matching should be chosen as well.

Convexity: For each problem � ∈ P , if μ′, μ′′ ∈ π(�) and there exists μ ∈ S(�) such

that μ(m) ∈ {μ′(m), μ′′(m)} for each m ∈ M , then μ ∈ π(�).

Note that convexity is weaker than requiring that all the stable matchings that are

between the chosen matchings–according to the men-wise better than relation–must

be chosen as well, which is also referred to as convexity in lattice theory literature.

To see this, consider a stable matching rule π such that for each problem �, only the

extremal matchings are chosen whenever there is no other μ ∈ S(�) such that μ(m) ∈

{μM(m), μW (m)} for each m ∈ M (such as the problem in Example 8); and chooses all
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of the stable matchings, otherwise. Although π satisfies our convexity, it clearly violates

the latter requirement. It is worth to emphasize that convexity requires a matching that

is a mixture of two chosen stable matchings be chosen only if this mixture matching is

also stable.12 In Section 8.1, in order to understand the notion of mixtures and stable

mixtures better, we make two structural observations. In Lemma 12, we provide a simple

procedure to obtain all the mixtures of two stable matchings. Then, in Lemma 13, we

show that the set of stable mixtures of two stable matchings is a Boolean sublattice of

the stable matchings, which can be interpreted as having a symmetric structure.

Theorem 1. Let π be a stable matching rule. Then, π is modular if and only if π satisfies

convexity.

Proof. Please see Section 7.1.

Proof sketch for the if part: Let π be a stable matching rule that satisfies convex-

ity. To simplify the construction of the desired modular assessment function F , we use

the connection between the stable matchings and the so-called closed sets of rotations.

Rotations–first introduced by Irving (1985)–can be intuitively thought of as the incre-

mental changes that transform a stable matching μ into another stable matching μ′ such

that there lies no other stable matching between the two (according to the men-wise

domination relation). A rotation ρ exposed in a stable matching μ is an (ordered) cyclic

sequence of distinct man-woman pairs [(m1, w1), (m2, w2) . . . , (mk, wk)] such that each

mi is matched to wi in μ. To eliminate ρ and obtain μ′, each man mi in ρ is matched to

wi+1. A rotation ρ precedes another rotation ρ′, if ρ must be eliminated first in order to

obtain a stable matching in which ρ′ is exposed. A set of rotations R is closed if whenever

12 The example in Section 8.2 demonstrates that every mixture of stable matchings is not necessarily
stable.
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a rotation ρ is contained in R, then all the rotations that precede ρ are also contained

in R. In their main result, Irving & Leather (1986) show that each stable matching μ

is associated with a unique closed set of rotations Rμ. It follows from this result and

few simple observations that we made in Section 6.1 that constructing the desired F is

equivalent to assigning a weight g(ρ) to each rotation ρ such that π(�) is the set of stable

matchings that minimize
∑

ρ∈Rμ
g(ρ).

μ̄

μ̄ � λ μ̄ � λ′

μ

ρ

+

q

+

q
+

ρ
+

q′

−

ρ′

−

ρ′ − q′−

ρ+q +

ρ′

−

q′
−

+
+

+

−
−

−

λ λ′

λλ′

Figure 1: A demonstration of our weight assignment to the rotations, where members of π(�) are lightly colored.

As the second step of the proof, we introduce hyper-rotations, generically denoted

by λ, which can be thought of as sets of rotations connecting the chosen stable matchings

(see Section 6.2). Since, by convexity, π(�) is a sublattice, let μ̄(μ) be its BM -best(worst)

matching. Now, there can be other chosen stable matchings between μ̄ and μ that are ob-

tained by eliminating hyper-rotations. Therefore, the weights of the rotations should be

assigned such that the total weight of each hyper-rotation is zero, while the total weight

of each (relatively) closed set of rotations R ( λ–which correspond to the unchosen
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stable matchings between μ̄ and μ–is positive. For a fixed hyper-rotation λ, achieving

this requires “preloading” in the sense that we assign positive weights to the rotations

with no predecessors in λ and assign negative weights (say −1) to the rotations with no

successors in λ, while assigning zero weights to all other rotations in λ.

In Figure 1, we demonstrate this construction for a particularly simple case. For

the general construction, the inner structure of hyper-rotations, and therefore convexity,

plays a crucial role. In Lemma 8, we show that convexity implies that each hyper-rotation

λ is a connected set of rotations. This observation paves the way to preload the positive

weights in a hyper-rotation properly, in that we can distribute each negative weight

assigned to a rotation ρ with no successors equally among the rotations that have no

predecessors and precede ρ. We complete the proof by showing that we obtain the de-

sired weight assignments through this construction.

Since Ore (1956),13 it is known that any finite distributive lattice can be obtained

as the minimizers of a submodular function14 that is defined over the subsets of a finite

set.15 This raises the question that if we can provide a counterpart to Theorem 1 for

stable matching rules that are submodular. That is, the chosen stable matchings for each

problem �, are the ones that minimize a submodular assessment function F : for each

μ, μ′ ∈ S(�), we have F (μ) + F (μ′) ≥ F (μ ∨ μ′) + F (μ ∧ μ′). The following corollary to

Theorem 1 shows that the answer is in the affirmative.

Corollary 1. Let π be a stable matching rule. Then, π is submodular if and only if π(�) is

a sublattice of S(�) for each problem � ∈ P .
13Also see Lemma 2.1 in Fujishige (2005).
14For an introduction to submodular functions, one can consult Lovász (1983). Edmonds (1970) and

Topkis (1978) are two classical references on the minimization of submodular functions.
15In a recent paper, Fujii & Kijima (2019) sharpens this result by showing that any finite distributive

lattice appears as the minimizers of a M\-concave (Murota 1998) set function. It is not immediately clear
how to formulate M\-concavity for an assessment function, which is defined over stable matchings.
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Proof. The only if part directly follows from π being submodular. Conversely, let � be

a problem, and consider π(�). Since π(�) is a sublattice of S(�), let μ̄(μ) be the BM -

best(worst) matching in π(�). Then, define L(�) = {μ ∈ S(�) | μ̄ BM μ BM μ}.

Note that L(�) is a convex sublattice of S(�) that contains π(�). Then, it follows from

Theorem 1 that there exists a modular assessment function F such that L(�) is the set

of matchings that minimizes F . Next, define a new assessment function F ∗ such that

for each μ ∈ S(�), if μ ∈ π(�), then F ∗(μ) = F (μ) − ε for some fixed ε > 0; and

F ∗(μ) = F (μ), otherwise. It directly follows from this construction that π(�) is the set

of stable matchings that minimize F ∗.

To see that F ∗ is submodular, note that F ∗(μ) + F ∗(μ′) < F ∗(μ∨μ′) + F ∗(μ∧μ′) for

some μ, μ′ ∈ S(�) only if μ ∈ π(�) and μ′ 6∈ π(�) (or vice versa). But, then it follows

from a basic observation–Lemma 5 in Section 6.1–that μ ∨ μ′ ∈ π(�) or μ ∧ μ′ ∈ π(�),

indicating that this is not possible.

3.2 Independence of irrelevant rankings

To introduce our second axiom, we need the notion of a π-transformed problem. For each

problem � ∈ P and each agent i ∈ N , let πi(�) be the set of agents that i is assigned to

at any matching μ ∈ π(�), i.e. πi(�) = {μ(i) ∈ N | μ ∈ π(�)}. Then, the π-transformed

problem �π is the problem obtained from � such that for each agent i ∈ N , each

member of πi(�) is moved to the top of agent i’s preferences by preserving the relative

rankings elsewhere.

Now, let us make a simple observation. For each μ ∈ S(�), if μ ∈ π(�), then in

transforming � into �π, for each i ∈ N , the set of agents that i prefers to μ(i) remains
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the same or shrinks, i.e. {j | j �π
i μ(i)} ⊂ {j | j �i μ(i)}. Therefore, for each μ ∈ S(�),

if μ ∈ π(�) then μ ∈ S(�π). Our next axiom requires the converse, that is, if a stable

matching remains stable after the transformation, then it must be one of the matchings

chosen by the rule in the initial problem. It follows from Proposition 2 that convexity

and independence of irrelevant rankings both independently characterize modular stable

matching rules.

Independence of Irrelevant Rankings (IIR): For each problem � ∈ P and μ ∈ S(�), if

μ ∈ S(�π), then μ ∈ π(�).

Proposition 2. Let π be a stable matching rule. Then, π satisfies convexity if and only if π

satisfies independence of irrelevant rankings.

Proof. Please see Section 7.2.

To see one side of the connection between convexity and IIR, we show that if a stable

matching rule π satisfies IIR, then π satisfies convexity. For a given problem �, let μ′, μ′′ ∈

π(�) and μ ∈ S(�) such that for each m ∈ M , μ(m) ∈ {μ′(m), μ′′(m)}. Since π satisfies

IIR, we have π(�) = S(�) ∩ S(�π). Therefore, to conclude that μ ∈ π(�) it is sufficient

to show that μ ∈ S(�π). By contradiction, suppose that there is a blocking pair (m,w).

Therefore, w �π
m μ(m) and m �π

w μ(w). Now, since we have μ(m) ∈ {μ′(m), μ′′(m)} and

μ(w) ∈ {μ′(w), μ′′(w)}, where μ′, μ′′ ∈ π(�), by the definition of the π-transformation,

no woman is moved over μ(m) in m’s preferences and no man is moved over μ(w) in

w’s preferences while moving from � into �π. Then, it follows from w �π
m μ(m) and

m �π
w μ(w) that w �m μ(m) and m �w μ(w), contradicting that μ ∈ S(�).

We conclude this section by revisiting the stable matching rules from the literature

that we discussed in Section 2.1. By using our Theorem 1, we can easily check if these
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Figure 2: The problem and the associated stable matchings lattice.

rules are modular or not. It turns out that the matching rule that chooses the median(s)

of the stable matching lattice (Example 2) is modular since it is convex. To see this,

recall that that this rule either chooses the unique median stable matching or all the

stable matchings that are between the median stable matchings according to the men-

wise better than relation. However, the following simple example demonstrates that the

rules presented in Examples 1,3, and 7 fail to satisfy convexity.

Example 8. Consider the problem with eight agents whose preferences are represented

by the table in Figure 2 such that each entry ij is associated with man mi and woman

wj, the �mi
-rank of wj is written in the bottom corner and the rank of mi in �wj

is

written in the top corner. in Figure 2, we also present the associated stable matchings

lattice such that each stable matching is represented as an array [r1, . . . , r4], where each

ri is the �mi
-rank of the women who is matched with mi. Then, [2222] and [3333] are

the median stable matchings, and the attainable sex-equal matchings. The center of the

stable matching lattice are [3322] and [2233]. Thus, all three rules fail to satisfy convexity.
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4 A new (class of) equity notions

We believe that studying modular stable matching rule opens new avenues through

which the issues of equity can be fruitfully analyzed. To demonstrate this, let us con-

sider the problem and its stable matchings lattice presented in Figure 3. We follow the

notation used in Example 8 with the addition that if a pair is unattainable, then the

associated entry is shadowed.
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Figure 3: The problem and the associated stable matchings lattice.

It is easy to see that the unique median stable matching, the unique median of

the stable matching lattice, and the unique center stable matching is the one in which

each man is matched to his second-ranked woman and each woman is matched to her

fifth-ranked man. However, one can argue that the matching in which each agent–man

or woman–is matched to his/her third-ranked attainable mate is more equitable, since

each agent is matched to his/her median attainable mate.

To formalize this intuition as a principle, let i be an agent and j, j ′ ∈ Ai be a pair

of attainable mates for i. Then, agent j is closer to medA
i than agent j ′ if |RankA

i (j) −
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RankA
i (medA

i )| < |RankA
i (j′) − RankA

i (medA
i )|. Our next axiom requires that if a match-

ing rule chooses a stable matching μ, then there should be no other stable matching in

which each agent with a different mate is assigned to someone who is closer to his/her

median attainable mate than compared to his/her mate at μ.

Equity undominance: For each problem � ∈ P , if μ ∈ π(�), then there is no μ′ ∈ S(�)

such that for each i ∈ N with μ(i) 6= μ′(i) we have μ′(i) is closer to medA
i than μ(i).

In our previous example, this principle uniquely pins down the matching in which

each agent is matched to his/her third-ranked mate. Next, we characterize the class of

modular stable matching rules that satisfy equity undominance. Let i be an agent, then

the individual assessment function Fi : Ai → R is unimodal with mode medA
i if Fi is

monotonically increasing for medA
i �i j and monotonically decreasing for j �i medA

i .16

Theorem 2. A modular stable matching rule π satisfies equity undominance if and only if

for each problem � ∈ P , π(�) is the set of stable matchings that minimize −
∑

i∈N Fi(μ(i)),

where Fi : Ai → R is unimodal with mode medA
i for each i ∈ N .

Proof. Please see Section 7.3.

As a stable matching rule, one can consider to choose all the equity undominated

stable matchings for each problem. However, as demonstrated in Section 8.2, the set of

equity undominated stable matchings turns out to be rather unstructured, in particular,

it fails to satisfy convexity.17 As for another stable matching rule that fails to satisfy

equity undominance, we can consider the stable matching rule presented in Example 7,

16Put differently, Fi attains its maximum at medA
i , and for each j, j′ ∈ Ai \ {medA

i }, we have Fi(j) >
Fi(j′) if j′ is further away from medA

i compared to j according to �i, i.e. j′ �i j �i medA
i or medA

i �i

j �i j′.
17Additionally, this set is not a sublattice of the original problem in general, and a stable matching that

is between two equity undominated matching, according to the men-wise better than relation, can be
equity dominated. These points are demonstrated via the problem presented in Section 8.2.
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which chooses the set of attainable sex-equal stable matchings.18 On the other hand, the

objective function of total spread from attainable medians formulated in Example 6, can

be expressed as a member of this additive unimodal family, where for each agent i and

stable matching μ, Fi(μ(i)) = −|RankA
i (μ(i)) − RankA

i (medA
i )|.

Remark 1. The notion of equity undominance and Theorem 2 can be generalized by

replacing median attainable mates by ideal mates as defined in Example 5. Thus, we

obtain a rich class of equity notions in which ideal mates are freely specified. On the

other hand, requiring that each agent is attached to a unique ideal mate can be a rather

demanding feature that rules out reasonable modular stable matching rules such as the

one presented in Example 2.

5 Related literature and final comments

We proposed a general foundational framework to address the issues of social welfare

and equity in the stable matching model and presented axiomatic characterizations for

modular stable matching rules. Existing studies have focused only on rules that singles

out an extremal matching, including Balinski & Sönmez (1999), Ehlers & Klaus (2006)

and Kojima & Manea (2010) who offer different characterizations of the Gale-Shapley

student-optimal stable matching rule. A general axiomatic approach to the problem of

fair algorithms was presented by Masarani & Gokturk (1989). However, their approach

concentrates on the algorithm, not on the resulting matchings, and concludes with an

impossibility result. Relatedly, Klaus & Klijn (2006b) introduce the procedural fairness

notion that labels a probabilistic stable matching rules as fair if each agent has the

18See the problem presented in Section 8.2, where the unique attainable sex-equal stable matching is
equity dominated.
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same probability to move at a certain point in the procedure that determines the final

probability distribution. Their approach does not provide any criterion for fairness or

equitability of a stable matching.

Modularity properties of agents’ preferences was investigated by Kreps (1979) in

decision-theory literature and by Milgrom & Shannon (1994) in the monotone compar-

ative statics literature. Chambers & Echenique (2008) clarifies the connection between

these two different approaches. The closest papers to ours are Kreps (1979) and Cham-

bers & Echenique (2009) who provide representations for modular preferences over

lattices under the additional assumption of monotonicity. However, violation of mono-

tonicity is the departure point of our question, since a stable matching rule that sat-

isfy monotonicity would choose one of the extremal matchings. As demonstrated in our

proofs, here, the neat mathematical structure of the stable matchings paves the way

for our results in the absence of monotonicity. As another key modelling difference, our

primitives are not agents’ preferences but stable matching rules that can be thought of

as choice rules over the set of stable matchings.

In the second part of the paper, we analyze a novel equity notion to demonstrate

that the class of modular stable matching rules are rich enough to formulate and analyze

similar notions of equity. This new framework leads to a wide variety of open problems

to be solved. To name a few, a major concern for stable matching rules is to provide

the agents with the right incentives to report their preferences truthfully. Recall that

the set of matchings chosen by a rule can be interpreted as the ones that are assigned

positive probability in a lottery. Therefore, it seems reasonable to consider probabilis-

tic assignment rules, as formulated by Bogomolnaia & Moulin (2001), associated with

a modular stable matching rule and investigate general conditions that guarantee its
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strategy-proofness in terms of stochastic-dominance. We have observed that there are

modular stable matching rules, such as the one presented in Example 6, that can be

implemented efficiently. In this vein, another direction that we find worth to explore

is discovering the principles underlying the general class of efficiently implementable

rules.
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6 Appendix A: Stepping stones

6.1 Rotations and some preliminary observations

For a given fixed problem � ∈ P , rotations–first introduced by Irving (1985)–are the in-

cremental changes that need to be made so that a stable matching μ can be transformed

into another stable matching μ′ such that μ BM μ′ and there is no other stable matching

μ′′ such that μ BM μ′′ BM μ′.

ρ11 = [(m1, w1), (m2, w2)]
ρ12 = [(m3, w3), (m4, w4)]
ρ13 = [(m5, w5), (m6, w6)]

ρ2 = [(m1, w2), (m4, w3), (m5, w6), (m2, w1), (m3, w4), (m6, w5)]
ρ3 = [(m1, w3), (m2, w4), (m3, w5), (m4, w6), (m5, w1), (m6, w2)]
ρ4 = [(m1, w4), (m2, w5), (m3, w6), (m4, w1), (m5, w2), (m6, w3)]
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Figure 4: The problem in Section 4 and the associated rotations.

Let μM and μW denote the men-optimal and women-optimal stable matchings. Let

μ be a stable matching such that μ 6= μW . Then, μ(m) 6= μW (m) for some man m.

For each such man m, define his successor woman at μ, denoted by sμ(m), as the first

attainable woman for m on his preference list who is less preferred than μ(m) (and

prefers him over her current partner in μ) i.e. sμ(m) is the �m-best attainable woman

w such that μ(m) �m w (and m �w μ(m)). A rotation ρ exposed in μ is an (ordered)

cyclic sequence of distinct man-woman pairs ρ = [(m1, w1), (m2, w2) . . . , (mk, wk)] such

that miwi ∈ μ and sμ(mi) = wi+1 for each i ∈ {1, . . . , k}, where the addition in the

subscripts is modulo k. To eliminate a rotation ρ exposed in a stable matching μ, each

man mi in ρ is matched to wi+1 while all the pairs that are not in ρ are kept the same. As

a result, we obtain another stable matching, denoted by μ � ρ, such that μ BM μ � ρ
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and there is no other stable matching μ′ with μ BM μ′ BM μ � ρ.

Let R denote the set of all rotations. A rotation ρ precedes another rotation ρ′,

denoted by ρ → ρ′, if in order to obtain a stable matching in which ρ′ is exposed, ρ must

be eliminated first. We assume that a rotation precedes itself. A rotation ρ immediately

precedes another rotation ρ′ if ρ → ρ′ and there is no other rotation ρ′′ such that ρ →

ρ′′ → ρ′. A distinct pair of rotations ρ and ρ′ are independent if none of them precedes

the other. The pair 〈R,→〉 is called the rotation poset.
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Figure 5: The stable matchings lattice and the rotation poset for the problem in Section 4 .

A subset of R, generically denoted by R, is closed if whenever a rotation ρ ∈ R,

then all the rotations that precede ρ are also in R. Let Cl(R) denote the set of all closed

subsets of R. We suppress the reference to the specific problem � ∈ P , whenever it is

clear from the context.
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We will use the following basic properties of rotations. First, a man-woman pair

(m,w) belongs to a rotation if and only if it appears in some stable matching (i.e. if

they are attainable) and w is not the worst mate of m in all stable matchings; and a

man-woman pair can be an element of at most one rotation (Irving & Leather 1986).

For each ρ ∈ R, let Nρ denote the set of agents who appear in rotation ρ. We note

that if a pair of rotations ρ and ρ′ are independent, then there is no agent who appears

both in ρ and ρ′, i.e. Nρ ∩ Nρ′ = ∅. Conversely, if there is no agent who appears both in

ρ and ρ′, then none of these rotations immediately precedes the other.

In their main result, Irving & Leather (1986) show that the closed subsets of R en-

dowed with the set containment relation 〈Cl(R),⊂〉 is a lattice that is order isomorphic19

to 〈S,BM〉. This result is parallel to Birkhoff’s Representation Theorem (Birkhoff 1937)

for distributive lattices.20 Next, we make some simple observations using this result. Let

� ∈ P be a given problem with the associated set of stable matching S and set of ro-

tations R. For each μ ∈ S, let Rμ be the associated closed subset of the rotation poset

〈R,→〉.

Lemma 1. For each μ ∈ S,
∑

mw∈μ(RankA
m(w) + RankA

w(m)) is the same.

Proof. Let μ, μ′ ∈ S such that μ′ = μ � ρ for some ρ ∈ R, We first show that for each

(m,w) ∈ ρ, we have

RankA
m(μ′(m)) = RankA

m(w) + 1 and RankA
w(μ′(w)) = RankA

w(m) − 1 (2)

To see this, note that since μ′ = μ � ρ, for each (m,w) ∈ ρ, we have w �m μ′(m)

19Given two posets (S,≤S) and (T,≤T ), an order isomorphism from (S,≤S) to (T,≤T ) is a bijective
function f from S to T that is an order embedding, i.e. for each x, y ∈ S, x ≤S y if and only if f(x) ≤T f(y).

20Asserting that for a distributive lattice L, the closed subsets of the partially ordered set induced by its
join-irreducible elements form a distributive lattice that is isomorphic to L.
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and μ′(w) �w m. Since there is also no other stable matching μ′′ such that μ BM

μ′′ BM μ′, it directly follows that (2) holds. It directly follows that
∑

mw∈μ′ RankA
m(w) =

∑
mw∈μ RankA

m(w) + |ρ| and
∑

mw∈μ′ RankA
w(m) =

∑
mw∈μ RankA

w(m) − |ρ|. Since each

μ ∈ S can be obtained from μM by sequentially eliminating the rotations in Rμ \ RμM ,

we reach the conclusion.

Lemma 2. A function F : S → R is modular if and only if there exists an additive set

function G : Cl(R) → R such that for each μ ∈ S, F (μ) = G(Rμ).

Proof. Let R ∈ Cl(R). Then, it follows from Irving & Leather (1986) that there exists

μ ∈ S such that R = Rμ. We define G : Cl(R) → R such that for each μ ∈ S, G(Rμ) =

F (μ). Now, let μ, μ′ ∈ S. Since 〈Cl(R),⊂〉 is order isomorphic to 〈S,BM〉, we have

Rμ∨μ′ = Rμ ∩Rμ′ and Rμ∧μ′ = Rμ ∪Rμ′ . Then, it directly follows that F is modular if and

only if G(Rμ ∪ Rμ′) = G(Rμ) + G(Rμ′) − G(Rμ ∩ Rμ′), that is G is additive.

Lemma 3. Let G : Cl(R) → R be an additive set function. Then, there exists g : R → R

such that for each R ∈ Cl(R), G(R) = G(∅) +
∑

ρ∈R g(ρ).

Proof. Let ρ ∈ R and define its closure C(ρ) = {ρ′ ∈ R | ρ′ → ρ}. Since the precedence

relation is transitive, C(ρ) \ {ρ} is closed. Therefore, for each ρ ∈ R, we can define

g(ρ) = G(C(ρ)) − G(C(ρ) \ {ρ}). Then, for each ρ ∈ R, we have G(C(ρ)) = G(∅) +
∑

ρ′∈C(ρ) g(ρ′). Now, let R ∈ Cl(R). Then, since R =
⋃

ρ∈R C(ρ), by additivity of G, we

conclude that G(R) = G(∅) +
∑

ρ∈R g(ρ).

Lemma 4. Let F : S → R be a modular function. Then, for each i ∈ N , there exists

Fi : Ai → R such that for each μ ∈ S, F (μ) =
∑

i∈N Fi(μ(i)).

Proof. It follows from Lemma 2 and Lemma 3 that there exists g : R → R such that

for each μ ∈ S, F (μ) = G(∅) +
∑

ρ∈Rμ
g(ρ) for some G(∅) ∈ R. Now, for each ρ ∈
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R and i ∈ Nρ, define gi(ρ) = g(ρ)/|Nρ|. Note that, by construction, we have g(ρ) =
∑

i∈Nρ
gi(ρ). Next, for each i ∈ N and j ∈ Ai, if i and j are matched at the men-optimal

stable matching, then define Fi(j) = G(∅)/2n. Otherwise, let ρij be the unique rotation

elimination of which makes i matched to j, and define

Fi(j) =
∑

{ρ|ρ→ρij}

gi(ρ). (3)

Now, let μ ∈ S. Since Rμ ∈ Cl(R), we have Rμ =
⋃

i∈N {ρ|ρ → ρiμ(i)}. It follows that

∑

ρ∈Rμ

g(ρ) =
∑

i∈N

∑

{ρ|ρ→ρiμ(i)}

gi(ρ). (4)

By substituting (3) into (4), we obtain that F (μ) =
∑

i∈N Fi(μ(i)).

Next, we present a basic observation about sublattices of S that is used in the proof

of Corollary 1.

Lemma 5. Let L and L′ be two sublattices of S such that L ⊂ L′ with the same BM -best

and BM -worst stable matchings. Then, for each μ, μ′ ∈ L′, if μ ∈ L, then μ ∨ μ′ ∈ L or

μ ∧ μ′ ∈ L.

Proof. If μ′ ∈ L, then the conclusion follows, since L is a sublattice of S. Suppose that

μ′ 6∈ L. Then, by contradiction, suppose that neither μ ∨ μ′ ∈ L nor μ ∧ μ′ ∈ L. Assume

without loss of generality that there is no other μ̂ ∈ L such that μ̂ BM μ with neither

μ̂ ∨ μ′ ∈ L nor μ̂ ∧ μ′ ∈ L.

Now, since L ⊂ L′ with the same BM -best and BM -worst stable matchings, let

μ1, μ2 ∈ L be the BM -worst and BM -best matchings in L such that μ1 BM μ′ BM μ2.
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Next, consider the matching (μ ∨ μ′) ∧ μ1. Note that L′ is distributive, as a sublattice of

S which is distributive. Since μ1 BM μ′, it follows that (μ ∨ μ′) ∧ μ1 = (μ ∧ μ1) ∨ μ′.

Case 1: Suppose that (μ ∧ μ1) ∨ μ′ = μ′. Then, we show that μ ∧ μ′ = μ ∧ μ1, which

contradicts that the latter is in L, but the former is not. To see this, when we substitute

(μ ∧ μ1) ∨ μ′ for μ′, by distributivity, we get μ ∧ μ′ = (μ ∧ μ1) ∨ (μ ∧ μ′), which equals

μ ∧ μ1, since μ1 BM μ′.

Case 2: Suppose that (μ ∧ μ1) ∨ μ′ 6= μ′, and let μ3 = (μ ∧ μ1) ∨ μ′. Then, since

μ1 BM μ3 BM μ′, by our choice of μ1, it must be that μ3 /∈ L. But, then consider μ ∧ μ1.

Note that μ ∧ μ1 ∈ L, since L is a sublattice. Moreover, (μ ∧ μ1) ∨ μ′ = μ3 /∈ L and

(μ∧μ1)∧μ′ = μ∧μ′ /∈ L. But, this contradicts to our choice of μ, since μ BM μ∧μ1 and

μ 6= μ ∧ μ1 (recall that μ ∈ L, but μ ∧ μ1 /∈ L).

6.2 An order isomorphism result

Let π be a stable matching rule and � ∈ P be a problem with the associated rotation

poset 〈R,→〉 such that π(�) is a sublattice of 〈S(�),BM〉. First, let μ̄(μ) be the BM -

best(worst) matching in π(�). Then, define Rδ = Rμ \ Rμ̄ and

Cl0(Rδ) = {Rμ \ Rμ̄ | μ ∈ π(�)}.

Evidently, elements of Cl0(Rδ) are not closed according to the precedence relation →,

unless μ̄ is the men-optimal stable matching at �. Next, we recursively define two set

collections {X i}K
i=1 and {Λi}K

i=1. Then, we prove a related structural result, Proposition

3, which will be an important stepping stone in proving Theorem 1.

For k = 1: Consider min(Cl0(Rδ),⊂) that consists of R ∈ Cl0(Rδ) such that there is no
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R′ ∈ Cl0(Rδ) \ ∅ with R′ ( R. Let X1 = Cl0(Rδ) and Λ1 = min(X1,⊂).

For k ≥ 2: Define X2 = {R \
⋃

R′∈Λ1 R′ | R ∈ X1} and Λ2 = min(X2,⊂).21 Similarly, for

each k ≥ 1, define Xk+1 = {R \
⋃

R′∈Λk R′ | R ∈ Xk} and Λk+1 = min(Xk+1,⊂).

Let K ≥ 1 be the smallest number such that XK+1 = ∅. Then, {Xk}K
k=1 and {Λk}K

k=1

are the ordered collection of the disjoint nonempty sets that are constructed. Define

Λ =
⋃K

k=1 Λk. We call each member of Λ a hyper-rotation and generically denote by λ.

Figure 6 presents a demonstration of how Λ is formed.

Lemma 6. For each k ∈ {1, . . . , K}, 〈Xk,⊂〉 is a lattice.

Proof. By induction, first, consider the case that k = 1, where X1 = Cl0(Rδ). Since π(�)

is a sublattice of 〈S(�),BM〉, Cl0(Rδ) is a sublattice of 〈Cl(Rδ),⊂〉. Therefore, 〈X1,⊂〉

is a lattice. Next, for each k ∈ {1, . . . , K − 1} assume that 〈Xk,⊂〉 is a lattice, and let

Q,Q′ ∈ Xk+1. By construction of Xk+1, there exist R ∈ Xk and R′ ∈ Xk such that

R = Q ∪
⋃

λ∈Λk λ and R′ = Q′ ∪
⋃

λ∈Λk λ. Since 〈Xk,⊂〉 is a lattice, R ∩ R′ ∈ Xk and

R ∪ R′ ∈ Xk. Therefore, Q ∩ Q′ ∈ Xk+1 and Q ∪ Q′ ∈ Xk+1. Thus, we conclude that

〈Xk+1,⊂〉 is a lattice.

Lemma 7. Let ρ ∈ Rδ. Then, there exists unique λρ ∈ Λ such that ρ ∈ λρ.

Proof. First, note that by construction, {Λk}K
k=1 is collection of disjoint sets such that

for each ρ ∈ Rδ, there exists k ∈ {1, . . . , K} and λ ∈ Λk such that ρ ∈ λ. Next, let

k ∈ {1, . . . , K} and λ, λ′ ∈ Λk be distinct. Since, by Lemma 6, 〈Xk,⊂〉 is a lattice,

λ ∩ λ′ ∈ Xk. Then, Λk = min(Xk,⊂) implies that λ ∩ λ′ = ∅.

21The elements of X2 and Λ2 are sets of rotations that are not closed neither according to → nor
according to⇒ that is to be defined later.
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μ̄ � λ μ̄ � λ′
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ρq

ρ′q′

λ λ′

λλ′

Figure 6: A demonstration of our construction for Λ, where π(�) are the green labelled nodes.

Lemma 8. Let R ∈ Cl0(Rδ). Then, {λρ}ρ∈R partitions R.

Proof. For each k ∈ {1, . . . , K}, define Λk
R = {λ ∈ Λk | λ ⊂ R}. Recall that X1 = Cl0(Rδ)

and since XK+1 = ∅, we have XK = ΛK . Then, since R ∈ Cl0(Rδ), by construction of

{Xk}K
k=1 and {Λk}K

k=1, we have R =
⋃K

k=1

⋃
{λ∈Λk

R} λ. Since for each ρ ∈ R, by Lemma 7,

λρ is the unique member of Λ with ρ ∈ λρ, it follows that R =
⋃

{ρ∈R} λρ and for each

ρ, ρ′ ∈ R, either λρ = λρ′ or λρ ∩ λρ′ = ∅.

Now, we are ready to prove Proposition 3, which we will use to prove Theorem 1.
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To introduce this result, first, recall that Λ =
⋃K

k=1 Λk. Then, for each distinct λ, λ′ ∈ Λ,

λ precedes λ′, denoted by λ ⇒ λ′, if for each R ∈ Cl0(Rδ), λ′ ⊂ R implies that λ ⊂ R.

Put differently, λ⇒ λ′ if

λ ⊂
⋂

{R∈Cl0(Rδ)|λ′⊂R}

R.

Note that 〈Λ,⇒〉 is a finite poset. Let Cl(Λ) be the closed subsets of Λ with respect to the

precedence relation ⇒. In Proposition 3, we show that 〈Cl0(Rδ),⊂〉 is order isomorphic

to 〈Cl(Λ),⊂〉. To see this, define Λ : Cl0(Rδ) → Cl(Λ) such that for each R ∈ Cl0(Rδ),

Λ(R) = {λρ}ρ∈R.

Proposition 3. The Λ mapping induces an order isomorphism between 〈Cl0(Rδ),⊂〉 and

〈Cl(Λ),⊂〉.

Proof. Let R ∈ Cl0(Rδ). First, we verify that Λ(R) ∈ Cl(Λ). To see this, let λ ∈ Λ(R)

and λ′ ∈ Λ such that λ′ ⇒ λ. Then, since R ∈ Cl0(Rδ) with λ ⊂ R, it follows from

λ′ ⇒ λ that λ′ ⊂ R. Therefore, λ′ ∈ Λ(R). To see that Λ is one-to-one, note that for each

R,R′ ∈ Cl0(Rδ), if R 6= R′ then Λ(R) 6= Λ(R′). To see that Λ is an order embedding, by

Lemma 8, for each R,R′ ∈ Cl0(Rδ), {λρ}ρ∈R partitions R and {λρ′}ρ′∈R′ partitions R′. It

follows that R ⊂ R′ if and only if {λρ}ρ∈R ⊂ {λρ}ρ∈R′ .

Finally, we show that Λ is onto. To see this, let Q ∈ Cl(Λ) and define RQ =
⋃

λ∈Q λ.

We show that RQ ∈ Cl0(Rδ) and Λ(RQ) = Q. To see this, let λ ∈ Λ and recall that,

by construction, there exists R ∈ Cl0(Rδ) such that λ ⊂ R. Therefore, we can define

Rλ =
⋂

{R∈Cl0(Rδ)|λ⊂R} R. Then, since Cl0(Rδ) is a lattice, we have Rλ ∈ Cl0(Rδ) and
⋃

λ∈Q Rλ ∈ Cl0(Rδ). Next, to conclude, we show that RQ =
⋃

λ∈Q Rλ.

Since for each λ ∈ Q, λ ⊂ Rλ and RQ =
⋃

λ∈Q λ, we have RQ ⊂
⋃

λ∈Q Rλ. To

see the converse, let λ ∈ Q and ρ ∈ Rλ. We show that ρ ∈ RQ. Since Rλ ∈ Cl0(Rδ),
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by Lemma 8, {λρ′}{ρ′∈Rλ} partitions Rλ. Therefore, λρ ⊂ Rλ. Then, it follows from the

construction of Rλ that for each R ∈ Cl0(Rδ), if λ ⊂ R then λρ ⊂ R, that is λρ ⇒ λ.

Now, since Q ∈ Cl(Λ) and λ ∈ Q, λρ ⇒ λ implies that λρ ∈ Q. Since RQ =
⋃

λ∈Q λ, we

have λρ ⊂ RQ indicating that ρ ∈ RQ. Thus, we conclude that RQ =
⋃

λ∈Q Rλ. Then, it

directly follows from the formulation of Λ that Λ(RQ) = Q.
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7 Appendix B

7.1 Proof of Theorem 1

Only if part: Let π be a modular stable matching rule. It directly follows from modularity

that π(�) is a sublattice of 〈S(�),BM〉. Moreover, by Lemma 2, there exists an additive

set function G : Cl(R) → R such that π(�) = argminμ∈S(�)G(Rμ) and by Lemma 3 there

exists g : R → R such that for each R ∈ Cl(R), G(R) = G(∅) +
∑

ρ∈R

g(ρ).

To see that π satisfies convexity, let μ∗, μ∗∗ ∈ π(�) and μ ∈ S(�) such that μ(m) ∈

{μ∗(m), μ∗∗(m)} for each m ∈ M . We show that μ ∈ π(�). First, let μ′ = μ∗ ∨ μ∗∗

and μ′′ = μ∗ ∧ μ∗∗. Note that, we have μ(m) ∈ {μ′(m), μ′′(m)} for each m ∈ M , and

μ′, μ′′ ∈ π(�) since π(�) is a sublattice. Therefore, if μ = μ′ or μ = μ′′ then we conclude

that μ ∈ π(�); if not then μ′ BM μ BM μ′′, which implies that Rμ′ ( Rμ ( Rμ′′ . Let

P = Rμ \ Rμ′ and P ′ = Rμ′′ \ Rμ.

Next, we show that each ρ ∈ P and each ρ′ ∈ P ′ are independent. To see this,

recall that Nρ denotes the set of agents in a rotation ρ. Let ρ ∈ P and i ∈ Nρ, then in

moving from μ′ to μ it must be that agent i’s mate is changed and μ(i) = μ′′(i), and

in moving from μ to μ′′, i’s mate can not change, that is there is no ρ′ ∈ P ′ such that

i ∈ Nρ′ . Therefore, for each ρ ∈ P and ρ′ ∈ P ′, Nρ ∩ Nρ′ = ∅, and there is no ρ ∈ P

that immediately precedes any ρ′ ∈ P ′. It follows that each ρ ∈ P and each ρ′ ∈ P ′ are

independent.

Now, since each ρ ∈ P and each ρ′ ∈ P ′ are independent, Rμ′ ∪ P ′ ∈ Cl(R). Let

μ′′′ ∈ S(�) be such that Rμ′′′ = Rμ′ ∪P ′. Finally, to get a contradiction that μ′ minimizes

G, we show that G(Rμ′′′) < G(Rμ′). Since μ′, μ′′ ∈ π(�), we have G(Rμ′) = G(Rμ′′). Since
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G is additive and {P, P ′} partitions Rμ′′ \Rμ′ , it follows that
∑

ρ∈P g(ρ)+
∑

ρ′∈P ′ g(ρ′) = 0.

Now, if μ /∈ π(�), then we must have
∑

ρ∈P g(ρ) > 0, which implies that
∑

ρ′∈P ′ g(ρ′) < 0.

Then, we have G(Rμ′′′) < G(Rμ′). Thus, we conclude that μ ∈ π(�).

If part: Let π be a stable matching rule that satisfies convexity. Let � ∈ P be a

problem with the associated rotation poset 〈R,→〉. To show that there exists a modular

fairness measure F : S(�) → Z such that π(�) = argminμ∈S(�)F (μ), by Lemma 2, it is

sufficient to show that there exists an additive set function G : Cl(R) → R such that

π(�) = argμ∈S(�)min G(Rμ).

It directly follows from convexity of π that π(�) is a sublattice of 〈S(�),BM〉. There-

fore, Proposition 3 holds for π. In what follows, we assume that the formal objects,

such as Cl0(Rδ) and Λ, defined in Section 6.2 are associated with π. Note that for each

μ ∈ S(�), μ ∈ π(�) if and only if Rμ \ Rμ̄ ∈ Cl0(Rδ). Therefore, to prove the result,

we show that there exists an additive set function G : Cl(R) → R such that for each

R ∈ Cl(R), R minimizes G if and only if R \ Rμ̄ ∈ Cl0(Rδ). Next, by using Proposi-

tion 3 and convexity, we prove the following structural result that paves the way for

constructing the desired additive set function.

Lemma 9 (Partition lemma). Let λ ∈ Λ that contains at least two rotations and {P, P ′}

be a partition of λ. Then, there exist ρ ∈ P and ρ′ ∈ P ′ such that ρ → ρ′ or ρ′ → ρ.

Proof. By contradiction, suppose that each ρ ∈ P and ρ′ ∈ P ′ are independent. Let

λ ∈ Λj for some j ∈ {1, . . . , K}. Recall that Λj = min(Xj ,⊂), and consider the set

A =
⋃j−1

k=1 Λk, in the case that j = 1, assume that A = ∅. Then, we have A ∈ Cl(Λ). By

construction of 〈Λ,⇒〉, for each λ′ ∈ Λ, if λ′ ⇒ λ, then λ′ ∈ Λi for some i < j. Therefore,

we have A ∪ {λ} ∈ Cl(Λ). Then, by Proposition 3, there exist R,R′ ∈ Cl0(Rδ) such that

Λ(R) = A and Λ(R′) = A∪ {λ}. Let μ and μ′ be the stable matchings in S(�) associated
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with R and R′, i.e. R = Rμ \ Rμ̄ and R′ = Rμ′ \ Rμ̄.

First, we show that there is no μ′′ ∈ π(�) with μ BM μ′′ BM μ′. Otherwise, let

R′′ = Rμ′′ \ Rμ̄. Since μ′′ ∈ π(�), we have R′′ ∈ Cl0(Rδ) and since μ BM μ′′ BM μ′, we

have R ( R′′ ( R′. Then, by Proposition 3, Λ(R′′) ∈ Cl(Λ) and Λ(R) ( Λ(R′′) ( Λ(R′).

But, since Λ(R) = A and Λ(R′) = A∪{λ}, there can not exist such Λ(R′′), a contradiction.

Now, let μ′′ be the matching obtained from μ by eliminating all the rotations in P .

Since each ρ ∈ P and ρ′ ∈ P ′ are independent, Nρ ∩ Nρ′ = ∅. Therefore, in moving from

μ to μ′′ it must be that if an agent i’s mate is changed, then μ′′(i) = μ′(i). It follows that

for each m ∈ M , μ′′(m) ∈ {μ(m), μ′(m)}. Then, by convexity, we have μ′′ ∈ π(�). But,

this contradicts that there is no μ′′ ∈ π(�) with μ BM μ′′ BM μ′.

We are now ready to construct an additive function H : Cl(Rδ) → Z such that for

each R ∈ Cl(Rδ), H(R) = 0 if and only if R ∈ Cl0(Rδ). Let λ ∈ Λ and define λ↓ as the set

of rotations in λ that has no successor in λ, i.e. λ↓ = {q ∈ λ | there is no ρ′ ∈ λ with q →

ρ′} (we denote a generic element of λ↓ by q). Similarly define λ↑ as the set of rotations

in λ that has no predecessor in λ, i.e. λ↑ = {ρ ∈ λ | there is no ρ′ ∈ λ with ρ′ → ρ}. Since

precedence is a transitive relation and λ is a finite set, λ↓ 6= ∅ and λ↑ 6= ∅. If λ is not

singleton, then λ↑∩λ↓ = ∅. Otherwise, suppose that there exists ρ ∈ λ↑∩λ↓ and consider

{p} and λ \ {p}, which partitions λ. Then, there is no ρ′ ∈ λ such that ρ → ρ′ (since

ρ ∈ λ↓) or ρ′ → ρ (since ρ ∈ λ↑). But, this contradicts to Lemma 9. Thus, we conclude

that λ↑ ∩ λ↓ = ∅ whenever λ is not singleton. Now, let λ� and λ� be any pair of set of

rotations in λ that respectively contains λ↓ and λ↑ such that λ� ∩ λ� = ∅.

Remark 2. For the current proof, we can assume that λ� = λ↑ and λ� = λ↓. We present

this general construction foreseeing that it will crucial in proving Theorem 2 and similar

results.
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Let λ ∈ Λ that is not singleton and ρ ∈ λ. Then, define λ�(ρ) as the set of rotations

in λ� that are preceded by ρ, i.e. λ�(ρ) = {q ∈ λ� | ρ → q}. Similarly, define λ�(ρ) as

the set of rotations in λ� that precede ρ, i.e. λ�(ρ) = {ρ′ ∈ λ� | ρ′ → ρ}.

Next, recall that, by Lemma 7, for each ρ ∈ Rδ, there exists unique λρ ∈ Λ such that

ρ ∈ λρ. Therefore, we can define h : Rδ → Z such that for each ρ ∈ Rδ, if λρ = {ρ}, then

h(ρ) = 0; if not, then let λ = λρ and define

h(ρ) =






− 1 if ρ ∈ λ�,
∑

q∈λ�(ρ)

1

|λ�(q)|
if ρ ∈ λ�, and

0 otherwise.

Figure 7 demonstrates this construction. For each nonempty Q ⊂ Rδ, define H(Q) =
∑

ρ∈Q h(ρ) and H(∅) = 0. Note that by construction of h, for each λ ∈ Λ, H(λ) = 0. The

construction of h together with Lemma 9 guarantees that the following assertion holds.

h(ρ1) = 3/2 h(ρ2) = 1/2

h(ρ3) = 0 h(ρ4) = 0

h(ρ5) = −1 h(ρ6) = −1

ρ1

ρ3

ρ5

ρ2

ρ4

ρ6

λ↓(ρ) λ↑(ρ)
ρ1 {ρ5, ρ6} {ρ1}
ρ2 {ρ6} {ρ2}
ρ3 {ρ5} {ρ1}
ρ4 {ρ6} {ρ1, ρ2}
ρ5 {ρ5} {ρ1}
ρ6 {ρ6} {ρ1, ρ2}

Figure 7: Values of the h function, where λ� = λ↑ = {ρ1, ρ2} and λ� = λ↓ = {ρ5, ρ6}.

45



Lemma 10. Let λ ∈ Λ and Q ⊂ λ� be a nonempty set of rotations such that λ↓ \ Q 6= ∅.

Then, we have H(
⋃

q∈Q λ�(q)) > |Q|.

Proof. To see this, first, let λ�(Q) =
⋃

q∈Q λ�(q) and note that, by construction of h,

H(λ�(Q)) ≥ |Q|. In what follows, we show that there exists ρ∗ ∈ λ�(Q) ∩ λ↑ such that

λ�(ρ∗) contains some q′ ∈ λ↓ \Q. Thus, we will conclude that h(ρ∗) >
∑

q∈Q∩λ�(ρ∗)
1

|λ�(q)|

and H(λ�(Q)) > |Q|. To see this, let P be the set of rotations in λ that precede an

element of Q. Note that P 6= λ, since λ↓ \ Q 6= ∅. Then, consider P and λ \ P , which

partitions λ. It follows from Lemma 9 that there exists ρ ∈ P and ρ′ ∈ λ \ P such that

ρ → ρ′ or ρ′ → ρ. By our choice of P , the latter is not possible, so we have ρ → ρ′. Since

ρ′ ∈ λ \ P , there exists q′ ∈ λ↓ \ Q such that ρ′ → q′, and thus ρ → q′. Since ρ ∈ P , there

exists ρ∗ ∈ λ�(Q) ∩ λ↑ such that ρ∗ → ρ. Thus, we conclude that ρ∗ → q′ as desired.

Next, we show that by restricting the domain of H to Cl(Rδ), we will obtain the

desired additive function. Figure 8 presents a demonstration of our construction.

Lemma 11. For each R ∈ Cl(Rδ), H(R) = 0 if and only if R ∈ Cl0(Rδ).

Proof. (If part) As we noted before, by the construction of h, for each λ ∈ Λ, we have

H(λ) = 0. Since, by Lemma 8, for each R ∈ Cl0(Rδ), {λρ}ρ∈R partitions R, it follows

that H(R) = 0.

(Only if part) Let R ∈ Cl(Rδ) such that R 6∈ Cl0(Rδ). We show that H(R) > 0.

First, recall that, by Lemma 7, for each ρ ∈ Rδ, there exists unique λ ∈ Λ such that

ρ ∈ λ. Therefore, {R ∩ λ}λ∈Λ partitions R. Since H is additive, it follows that H(R) =
∑

λ∈Λ H(R ∩ λ).

Since R ∈ Cl(Rδ) but R 6∈ Cl0(Rδ), by Proposition 3, there exists λ ∈ Λ, such that

R ∩ λ 6= ∅ and λ \ R 6= ∅. Therefore, λ is not singleton, and by the construction of h,
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for each ρ ∈ λ, h(ρ) < 0 (h(ρ) > 0) if and only if ρ ∈ λ� (ρ ∈ λ�). Thus, we have

H(R ∩ λ) = H(R ∩ λ�) + H(R ∩ λ�).

Since R is closed and for each ρ ∈ λ, either ρ ∈ λ� or ρ is preceded by a rotation in

λ↑ ⊂ λ�, it follows from R ∩ λ 6= ∅ that R ∩ λ� 6= ∅. Now, first, suppose that R ∩ λ� = ∅.

Then, H(R ∩ λ�) = 0, and thus H(R ∩ λ) > 0. Next, suppose that R ∩ λ� 6= ∅ and let

Q = R ∩ λ�. Note that, since R is closed, we have
⋃

q∈Q λ�(q) = R ∩ λ�. Therefore,

H(R ∩ λ) = H(
⋃

q∈Q λ�(q)) − |Q|.

Finally, by Lemma 10, we will conclude that H(R ∩ λ) > 0. To apply the lemma,

we need to show that λ↓ \ Q 6= ∅. But, if we would have λ↓ ⊂ Q, then since R is closed

and for each ρ ∈ λ, either ρ ∈ λ↓ or ρ precedes a rotation in λ↓, we must have λ ⊂ R,

contradicting that λ \ R 6= ∅.

Next, we extend the domain of H from Cl(Rδ) to Cl(R). For this, first define g :

R → Z such that for each ρ ∈ R,

g(ρ) =






− 1 if ρ ∈ Rμ̄,

1 if ρ 6∈ Rμ,

h(ρ) otherwise, i.e. ρ ∈ Rδ.

Then, define the additive function G : Cl(R) → R such that G(∅) = 0 and for each

nonempty R ∈ Cl(R), G(R) =
∑

ρ∈R g(ρ).

It follows from the construction of g that for each R ∈ Cl(R), if R minimizes G,

then Rμ̄ ⊂ R ⊂ Rμ. Since R ∈ Cl(R), this means that R \ Rμ̄ ∈ Cl(Rδ). Then, since for

each ρ ∈ Rδ, g(ρ) = h(ρ), it directly follows from Lemma 11 that for each R ∈ Cl(R), R

minimizes G if and only if R \ Rμ̄ ∈ Cl0(Rδ). Thus, we complete the proof.
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Figure 8: A demonstration of our construction of h and g.

7.2 Proof of Proposition 2

The if part was proven in the main text. To see the only if part, let � ∈ P . Since π satis-

fies convexity, π(�) is a sublattice of 〈S(�),BM〉. To see that π satisfies IIR, first, let μ̄(μ)

be the BM -best(worst) matching in π(�). Then, recall that we obtain the men(women)-

optimal stable matching for the problem �π by running the men(women)-proposing

Gale-Shapley algorithm, in which each man(woman) proposes to women(men) by fol-

lowing his(her) transformed preference list. Then, it directly follows that the men(women)-

optimal stable matching for the problem �π is μ̄(μ). Therefore, for each μ ∈ S(�), if
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μ BM μ̄ or μ BM μ, then μ /∈ S(�π). Now, let μ ∈ S(�) be such that μ̄ BM μ BM μ.

Next, we show that if μ ∈ S(�π), then μ ∈ π(�). By contradiction, suppose that μ ∈

S(�π) \ π(�). Assume without loss of generality that there is no other μ̂ ∈ S(�π) \ π(�)

such that μ̂ BM μ.

We show that there exists m ∈ M such that μ(m) /∈ πm(�). To see this, let μ′, μ′′ ∈

π(�) be the BM -worst and BM -best matchings such that μ′ BM μ BM μ′′. Since π

satisfies convexity and μ /∈ π(�), there exists m ∈ M such that μ(m) 6∈ {μ′(m), μ′′(m)}.

Next, we show that μ(m) /∈ πm(�). By contradiction, suppose that there exists μ̃ ∈ π(�)

with μ̃(m) = μ(m). We show that this contradicts that there is no other μ̂ ∈ S(�π)\π(�)

such that μ̂ BM μ. To see this, let μ∗ = (μ′ ∧ μ̃) ∨ μ′′. Since π(�) is a lattice, μ∗ ∈ π(�)

and therefore μ∗ 6= μ. Moreover, μ∗ 6= μ′ and μ∗ 6= μ′′, since μ∗(m) = μ(m).

Now, consider the matching μ ∨ μ∗. First, we show that μ ∨ μ∗ 6= μ. If not, then

μ BM μ∗. Since μ∗ ∈ π(�) and μ∗ BM μ′′, this contradicts that μ′′ is the BM -best

matching in π(�) such that μ BM μ′′. Next, we show that μ ∨ μ∗ ∈ S(�π) \ π(�). To

see this, recall that μ ∈ S(�π) is given and we know that μ∗ ∈ π(�). Then, as argued

in the main text, μ∗ ∈ π(�) implies that μ∗ ∈ S(�π). Since S(�π) is a lattice, it directly

follows that μ ∨ μ∗ ∈ S(�π). To see that μ ∨ μ∗ 6∈ π(�), recall that μ′ BM μ ∨ μ∗ BM μ.

Moreover, μ′ 6= μ∨μ∗, since (μ∨μ∗)(m) = μ(m). Then, since μ′ is the BM -worst matching

in π(�) such that μ′ BM μ, we must have μ ∨ μ∗ 6∈ π(�). Thus, we conclude that

μ ∨ μ∗ ∈ S(�π) \ π(�) such that μ ∨ μ∗ BM μ and μ ∨ μ∗ 6= μ. But, this contradicts our

choice of μ. Therefore, we conclude that μ(m) /∈ πm(�).

Now, we are ready to show that μ 6∈ S(�π). To see this, let w = μ(m). Then, by

the construction of �π, m is the �π
w-best man for w. Since μ(m) /∈ πm(�), we also have

w �π
m μ(m). Therefore, m and w form a blocking pair at μ.
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7.3 Proof of Theorem 2

If part: To see that equity undominance is satisfied, let � ∈ P and let μ ∈ S(�) that

minimizes −
∑

i∈N Fi(μ(i)). Since for each i ∈ N , Fi is is unimodal with respect to �i

with mode medA
i , it follows that there is no μ′ ∈ S(�) such that for each i ∈ N , μ′(i) is

closer to medA
i than μ(i).

Only if part: Let � ∈ P be a problem, S and R be the associated sets of stable matchings

and rotations.

Step 1. Let ρ = [(m1, w1), (m2, w2) . . . , (mk, wk)] be a rotation. For each i ∈ {1, . . . , k},

define ρ(mi) = wi and sρ(mi) = wi+1; ρ(wi) = mi and sρ(wi) = mi−1, where the addition

and subtraction in the subscripts is modulo k. Now, for each i ∈ N and ρ ∈ R, define

φi(ρ) =






0 if there is no pair with i in ρ,

−1 if sρ(i) is closer to medA
i than ρ(i),

1 if ρ(i) is closer to medA
i than sρ(i).

(5)

Then, since each μ ∈ S is obtainable from μM by eliminating the rotations in Rμ,

we have for each i ∈ N ,

|RankA
i (μ(i)) − RankA

i (medA
i )| = K +

∑

ρ∈Rμ

φi(ρ) (6)

where K = |RankA
i (μM (i)) − RankA

i (medA
i )| = b|Ai|/2c − 1.

For each i ∈ N and j ∈ Ai, let ρij be the unique rotation elimination of which makes

i matched to j. By construction of φi, for each ρ ∈ Rμ, if there is no pair with i, then
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φi(ρ) = 0 and if there is a pair with i, then ρ → ρiμ(i). Therefore, we have

|RankA
i (μ(i)) − RankA

i (medA
i )| = K +

∑

{ρ|ρ→ρiμ(i)}

φi(ρ). (7)

Step 2. By using the generality of our results in Section 7.1, we construct an additive

function G : Cl(R) → R for π such that G(∅) = 0 and for each nonempty R ∈ Cl(R),

G(R) =
∑

ρ∈R g(ρ). To see this, let ρ ∈ R and N+
ρ (N−

ρ ) be the set of agents such that

φi(ρ) > 0 (φi(ρ) < 0). First, note that for each ρ ∈ R, if N+
ρ = ∅ (N−

ρ = ∅), then we must

have g(ρ) < 0 (g(ρ) > 0), otherwise some agent i ∈ N−
ρ (i ∈ N+

ρ ) must receive a positive

(negative) gi(ρ) value, contradicting that the resulting Fi is unimodal. To guarantee that

this is not the case, for each λ ∈ Λ that is not singleton choose λ� as the union of λ↓ and

all ρ ∈ λ such that N+
ρ = ∅, and λ� as the union of λ↑ and all ρ ∈ λ such that N−

ρ = ∅,

i.e. λ� = λ↓ ∪ {ρ′ ∈ λ | N+
ρ′ = ∅} and λ� = λ↑ ∪ {ρ ∈ λ | N−

ρ′ = ∅}. Note that, we have

λ�∩λ� = ∅, as we know that λ↑∩λ↓ = ∅. Now, by Lemma 11, for the associated mapping

H, for each μ ∈ S with Rμ̄ ⊂ Rμ ⊂ Rμ, we have H(Rμ) = 0 if and only if μ ∈ π(�).

In moving to G from H, there is a minor problem of directly using the construction

presented at the end of Section 7.1. To fix this, we need to modify our construction of g

by using the additional structure brought by equity undominance of π to guarantee that

each Fi can be constructed as to be unimodal. To show this, let μ ∈ π(�) and ρ ∈ R,

first,we make two simple observations:

(i) If ρ is exposed in μ, then N+
ρ 6= ∅; otherwise let μ′ = μ � ρ, then for each agent

i ∈ N with μ(i) 6= μ′(i) we have μ′(i) is closer to medA
i than μ(i), which contradicts that

π satisfies equity undominance.
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(ii) If μ is obtained from another matching μ′ by eliminating ρ, i.e. μ = μ′ � ρ, then

N−
ρ 6= ∅; otherwise for each agent i ∈ N with μ(i) 6= μ′(i) we have μ′(i) is closer to medA

i

than μ(i), which contradicts that π satisfies equity undominance.

Now, let ρ 6∈ Rμ (ρ ∈ Rμ̄). Then, as it was defined in Section 7.1, g(ρ) = 1 (g(ρ) =

−1) even if N+
ρ = ∅ (N−

ρ = ∅). To fix this, first, update g such that if N+
ρ = ∅ (N−

ρ = ∅),

then g(ρ) = −1 (g(ρ) = 1). However, following this update, it should still be the case

that if R ∈ Cl(R) minimizes G, then Rμ̄ ⊂ R ⊂ Rμ. To guarantee this, if μ̄ 6= μM , then

let ρ ∈ R be such that μ̄ = μ′ � ρ for some μ ∈ S. By (ii), we have N−
ρ 6= ∅. Therefore,

we can pick g(ρ) small enough as to guarantee that for each R ∈ Cl(R), if R ( Rμ̄, then

G(Rμ̄) < G(R). Similarly, if μ 6= μW , then let ρ ∈ R such that ρ is exposed in μ. By (i),

we have N+
ρ 6= ∅. Therefore, we can pick g(ρ) big enough as to guarantee that for each

R ∈ Cl(R), if Rμ ( R, then G(Rμ) < G(R).

Step 3. First, for the mapping g : R → R that is constructed in the previous step, we

show that for each ρ ∈ R, there exists {gi(ρ)}i∈N that satisfies

∑

i∈N

gi(p) = g(ρ), and (8)

for each i ∈ N , gi(ρ) = αφi(ρ) for some α > 0. (9)

To see this, recall that g is constructed such that for each ρ ∈ R, if N+
ρ = ∅ (N−

ρ = ∅),

then g(ρ) < 0 (g(ρ) > 0). Now, for each i ∈ N and ρ ∈ R, define gi(ρ) such that if

g(ρ) < 0, then

gi(ρ) =






0 if φi(ρ) = 0,

(g(ρ) − |N+
ρ |)

|N−
ρ |

if φi(ρ) < 0,

1 if φi(ρ) > 0.

(10)
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If g(ρ) ≥ 0, then

gi(ρ) =






0 if φi(ρ) = 0,

−1 if φi(ρ) < 0,

(g(ρ) + |N−
ρ |)

|N+
ρ |

if φi(ρ) > 0.

(11)

Note that, by this construction, {gi(ρ)}i∈N satisfies (8) and (9). Next, recall that for each

i ∈ N and j ∈ Ai, ρij was the unique rotation elimination of which makes i matched to

j. Then, we define

Fi(j) =
∑

{ρ|ρ→ρij}

gi(ρ). (12)

It directly follows from (7) and (9) that for each i ∈ N , Fi is unimodal with mode medA
i .

Finally, let μ ∈ S and define F (μ) =
∑

i∈N Fi(μ(i)). To see that F (μ) = G(Rμ), first, note

that since Rμ ∈ Cl(R), we have Rμ =
⋃

i∈N {ρ|ρ → ρiμ(i)}. By (9), for each i ∈ N and

ρ ∈ R, if φi(ρ) = 0, then gi(ρ) = 0. Therefore, it follows from (8) that

G(Rμ) =
∑

ρ∈Rμ

g(ρ) =
∑

i∈N

∑

{ρ|ρ→ρiμ(i)}

gi(ρ). (13)

By substituting (12) into (13), we conclude that F (μ) = G(Rμ).
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8 Appendix C

8.1 On the structure of (stable) mixtures

For a given fixed problem � ∈ P , and a pair of distinct stable matchings μ′ and μ′′ such

that μ′ BM μ′′, (women-improving-)cycles between μ′ and μ′′, denoted by C(μ′, μ′′),

are the set of mate changes that need to be made so that μ′ can be transformed into

μ′′. In contrast to rotations, there can be another stable matching μ ∈ S(�) such that

μ′ BM μ BM μ′′. A (women-improving) cycle C between μ′ and μ′′ is an (ordered) cyclic

sequence of distinct man-woman pairs C = [(m1, w1), (m2, w2) . . . , (mk, wk)] such that

miwi ∈ μ′ and miwi+1 ∈ μ′′ for each i ∈ {1, . . . , k}, where the addition in the subscripts

is modulo k. To open a cycle C, each man mi in C is matched to wi+1 while all the pairs

that are not in C are kept the same. For each cycle C ∈ C(μ′, μ′′), let NC denote the set

of agents that appear in cycle C. It is easy to note that for each pair of distinct cycles

C,C ′ ∈ C(μ′, μ′′), there is no agent who appears both in C and C ′, i.e. NC ∩ NC′ = ∅.

Lemma 12. Let � ∈ P be a problem, and let μ′, μ′′ ∈ S(�) be a pair of distinct stable

matchings such that μ′ BM μ′′. Then, a matching (not necessarily stable) μ is a mixture of

μ′ and μ′′ if and only if there is a set of cycles {Ck}K
k=1 ⊂ C(μ′, μ′′) such that μ is obtained

from μ′ via opening the cycles {Ck}K
k=1.

Proof. First, suppose that μ is obtained from μ′ via opening cycles {Ck}K
k=1 ⊂ C(μ′, μ′′).

Since for each pair of distinct cycles Ck, C l ∈ C(μ′, μ′′), there is no agent who appears

both in Ck and C l, it directly follows that for each m ∈ M , if μ(m) 6= μ′(m), then μ(m) =

μ′′(m). Therefore, μ is a mixture of μ′ and μ′′. Conversely, suppose that μ is a mixture of

μ′ and μ′′, and let m ∈ M such that μ(m) 6= μ′(m). Then, we have μ(m) = μ′′(m). By
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continuing similarly we obtain the sequence [(m,μ′(m)), (μ′(μ′′(m)), μ′′(m)), ∙ ∙ ∙ ], which

eventually yields a cycle C1 ∈ C(μ′, μ′′). Repeating the same construction for a man who

is not in C1, we obtain another cycle C2 ∈ C(μ′, μ′′). By following this procedure we

obtain the desired set of cycles {Ck}K
k=1.

Let B be a sublattice of S(�) with BM -best matching μ̄ and BM -worst matching μ.

Since S(�) is a distributive lattice, B is distributive as well. Then, B is a Boolean lattice

if B is complemented, i.e. for each μ ∈ B, there exists (a complement) μ′ ∈ B such that

μ ∨ μ′ = μ̄ and μ ∧ μ′ = μ.

Lemma 13. Let � ∈ P be a problem, and let μ1, μ2 ∈ S(�) be a pair of distinct stable

matchings. Then, the set of stable matchings that are mixtures of μ1 and μ2 is a Boolean

sublattice of S(�).

Proof. Let B be the set of stable matchings that are mixtures of μ1 and μ2. Then, B

is a sublattice of S(�) with BM -best matching μ̄ = μ1 ∨ μ2 and BM -worst matching

μ = μ1 ∧ μ2. Let μ be a stable matching that is a mixture of μ1 and μ2. Then, it follows

from Lemma 12 that there is a set of cycles {Ck}K
k=1 ⊂ C(μ̄, μ) such that μ is obtained

from μ̄ via opening the cycles {Ck}K
k=1. Moreover, since μ ∈ S(�), Rμ is a closed set of

rotations such that Rμ̄ ⊂ Rμ ⊂ Rμ. Now, let R = Rμ̄ ∪ (Rμ \ Rμ). Next, we argue that

R is a closed set of rotations as well. To see this, it is sufficient to show that there is no

ρ ∈ Rμ \ Rμ̄ that immediately precedes any ρ′ ∈ R. Now, note that an agent i appears

in one of the cycles {Ck}K
k=1 if and only if i appears in a rotation ρ ∈ Rμ \ Rμ̄. Since the

cycles in C(μ̄, μ) are disjoint, it follows that for each ρ ∈ Rμ\Rμ̄ and ρ′ ∈ R, Nρ∩Nρ′ = ∅.

Finally, let μ′ ∈ S(�) be such that Rμ′ = R. It directly follows that μ′ complements μ.
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8.2 An example

We present a problem to show that several claims made throughout the main text holds.

Consider the problem with eight men and women whose preferences are represented by

the table in Figure 9, where each entry is associated with a man m and woman w. If

m and w are attainable for each other, then the rank of w in �m (the rank of m in �w)

is written in the bottom (top) corner. If m and w are unattainable, then the associated

cells are shaded, indicating that we can freely choose the associated rank as far as it

is bigger than the number of agent’s total attainable mates. Note that each agent has a

unique median attainable mate in this problem, the associated median attainable ranks

are boxed in the table.

M
W

a b c d w x y z

1
1

3
2

5
4

2
3

4
5

1

2
4

2
3

6
2

4
5

1
1

5

3
3

4
5

1
1

3
2

5
4

2

4
5

1
1

5
4

2
3

6
2

4

5
3

1
1

3
2

2

6
2

2
1

3
3

1

7
1

7
5

1
4

2
3

3
2

3

8
3

3
4

2
5

1
2

3
1

7

Figure 9: The problem.

56



In Figure 10, we present the associated rotations and their poset. For each agent i

that appears in a rotation, the superscript (+) ((−)) means that i gets far away (closer

to) from his/her attainable median. For example, (m+, w−) ∈ ρ means that m gets far

away from his attainable median, whereas w gets closer to her attainable median after

the elimination of rotation ρ.

ρ1 = [(2(−), z(−)), (4(−), w(−))]

ρ2 = [(2(−), w(−)), (7(−), b(−)), (4(−), z(−)), (8(−), y(−))]

ρ31 = [(1(−), a(−)), (2(+), b(−))]; ρ32 = [(3(−), x(−)), (4(+), y(−))]

ρ41 = [(1(−), b(−)), (3(−), y(−))]; ρ42 = [(2(+), a(+)), (4(+), x(+))]

ρ5 = [(1(+), y(+)), (8(−), w(+)), (3(+), b(+)), (7(−), z(+))]

ρ61 = [(1(+), w(+)), (3(+), z(+))]; ρ62 = [(8(+), b(+)), (5(−), c(−)), (7(+), y(+)), (6(−), d(−))]

ρ71 = [(8(+), c(+)), (7(+), d(+))]; ρ72 = [(6(+), b(+)), (5(+), y(+))]

ρ1

ρ2

ρ31 ρ32

ρ41 ρ42

ρ5

ρ61 ρ62

ρ71 ρ72

Figure 10: The rotation poset.

In Figure 11, we present the stable matching lattice associated with the problem in

Figure 9 such that each stable matching is represented as an array [w1, . . . , w8], where

each wi is the woman who is matched with man i. Each edge is labelled by the associated

rotation whose elimination from the matching in the upper end of the edge results in

the matching in the lower end of the edge. The green (lighter) colored matchings are

the equity undominated ones. For this problem, we make the following obervations.

1. The set of equity undominated matchings is not a sublattice of the original problem

(claimed in Footnote 17). The matching [bayxcdzw] is the meet of two equity

undominated matchings. However, it is equity dominated by [yabxcdzw]. It also

follows from this observation that a stable matching that is between two equity

57



undominated matching, according to the men-wise better than relation, can be

equity dominated.

2. The unique stable matching that minimizes the total spread from the median is

[yabxcdzw].

3. The stable matching rule presented in Example 7, which chooses the set of attain-

able sex-equal stable matchings, does not satisfy equity undominance (claimed in

Footnote 18). The unique attainable sex-equal stable matching is μ∗ = [yxbacdzw],

since
∑

m∈M RankA
m(μ∗(m)) =

∑
w∈W RankA

w(μ∗(w)) = 22. However, μ∗ is equity

dominated by the matching [bxyacdzw].

4. Every mixture of stable matchings is not necessarily stable (claimed in Footnote

12). To show this, we modify the problem so that the rank of woman d for man 5

is 2 and the rank of man 5 for woman d is 3. We claim that the stable matching

lattice remains unchanged after this modification. We show this by showing that

this modification has no effect on the set of rotations. To see this, first note that

ρ62 the first rotation that contains 5, and it also turns out to be the first one that

contains d. Now, note that once ρ62 is eliminated, 5 is matched to y, where d �5 y,

and d is matched to 7, where 7 �d 5. It follows that there can be no rotation that

contains (5, d). Put differently, 5 and d remain unattainable for each other after the

modification, and thus the rotation poset remains unchanged. Next, consider the

stable matchings μ′ = [yabxcdzw] and μ′′ = [wazxybdc]. Then let μ be the matching

[wabxydzc] that is obtained as a mixture of μ′ and μ′′, in the sense that for each

agent i, we have μ(i) ∈ {μ′(i), μ′′(i)}. Clearly, μ is not stable, since it is not stable

in the original problem. Alternatively, to directly see that μ is not stable, note that

(5, d) forms a blocking pair in μ.
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Figure 11: The associated stable matchings lattice.
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