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Abstract

The paper contributes to the literature that examines the forma-
tion of international environmental agreements as a two-stage game,
where in the first countries decide whether to sign or not the agree-
ment and in the second they choose either emissions or abatement.
When the second stage is modelled as a Nash equilibrium only small
coalitions are stable, while when is modelled as a Stackelberg equi-
librium larger coalitions become stable but attain little welfare im-
provement, a result coined as the paradox of cooperation. In the
present paper we allow countries to choose both emissions and abate-
ment separately and we assume Stackelberg leadership in the second
stage. Using general functional forms, we confirm the paradox of co-
operation, avoiding breaking positivity constraints and we offer clear
intuition. When benefits from emissions and damages from global
net emissions are substantial, coalition’s leadership advantage cannot
overcome free-riding incentives if abatement costs are high, restricting
the size of stable coalitions. Large coalition become stable only when
the cost of abatement decreases substantially reducing free-riding in-
centives. However, the benefits they attain can also be reached by
countries acting independently.
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1 Introduction

Rapidly developing global environmental crises, including climate change,
require internationally coordinated action. Responding to this need, a large
and expanding body of literature examining the formation of international
environmental agreements has developed. A significant part of this literature
uses game theoretic tools. The main body of this literature arrives at the
pessimistic result that a stable agreement will either be ratified by a small
number of countries, or if larger coalitions form they achieve very little welfare
improvements, a result coined by Barret (1994) as the paradox of cooperation.
The present paper contributes to this literature by modelling countries’choice
of emissions and abatement separately, which facilitates the provision of a
clear intuition of the above results using general functional forms.
The literature examines the formation of international environmental

agreements as a two-stage game, originally developed in D’Aspremont et
al. (1983): In the first stage countries, assumed symmetric, decide whether
or not to participate in the agreement and in the second they take an action
(either emissions or abatement) with signatories internalizing the effect of
their actions on all other coalition members while nonsignatories maximize
their own welfare. The first stage is a non-cooperative Nash equilibrium
while the second stage is modelled as either a Nash or a Stackelberg equi-
librium. Under the assumption that signatories and nonsignatories choose
their emissions or abatement levels simultaneously, only small coalitions are
stable.1 Under the assumption that the coalition acts as a Stackelberg leader,
larger stable coalition become possible. Using abatement as the only choice
variable, Barrett (1994) finds that, depending on the cost of abatement, any
large coalition, including the grand coalition, is stable. However, large coali-
tions require extensive abatement effort, which, if the model is expressed in
terms of emissions, imply negative emissions as shown in Diamantoudi and
Sartzetakis (2006). If emissions are constrained to be positive, only relatively
small coalition sizes are stable, except at the corner as shown by Ulph and
Rubio (2006). Moreover, Barrett (1994) pointed to the paradox of coopera-
tion, which states that stable coalitions achieve very little especially when the

1The simultaneous moves game has been examined by Carraro and Siniscalco (1993),
Finus and Rundshagen (2001) and Rubio and Casino (2001).
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potential benefits from cooperation are large. The literature has discussed
this result extensively providing interesting insights. The framework of our
analysis using general functional forms allows us to provide the following in-
terpretation to the paradox of cooperation: Coalitions aiming at reducing a
public bad (net emissions) even when they have a leadership advantage over
free-riders cannot become immune to deviations and thus their membership
is limited, when individual benefits (from production and consumption) are
valued high relative to damages from aggregate activity (net emissions) and
technology solutions (abatement) are very expensive relative to benefits. Im-
provements in technology that substantially reduce the cost of abatement
allow for large stable coalitions since they reduce free-riding incentives, that
is, make participation to the coalition effortless since choices of members and
free-riders differ very little.
This literature, up until recently, uses specific functional forms or directly

resort to simulations. Diamantoudi and Sartzetakis (2015) using general
functional forms and emissions as the only choice variable determine the
size of the stable coalition in terms of the slopes of marginal benefits and
marginal damages. More recently Finus et al. (2021) also showed, using
general functional forms and abatement as the only choice variable, that
assuming the coalition acts as a Stackelberg leader in the second stage yields
at least as large stable coalitions as the simultaneous moves game. They also
provide very interesting intuition emphasizing the role of the best response
functions. However, the emphasis of the first paper is on farsighted behavior
and of the second on adaptation, which is consider as an additional choice
variable.
In the present paper we allow countries to choose both emissions and

abatement separately and we assume Stackelberg leadership in the second
stage. Allowing countries to choose emissions and abatement separately,
yields larger stable coalitions without violating the emissions positivity con-
straint; however, these large coalitions offer very little welfare improvement.
Using general functional forms we provide clear intuition by identifying the
two effects that determine the size of the stable coalition: On the one hand,
each coalition member internalizes the damages its own net emissions impose
on all other members, which leads them to choose lower emissions and higher
abatement relative to the outsiders. On the other hand, assuming that the
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coalition acts as a leader, its members take into account the reaction of non-
members to their choices and thus, they choose higher emissions and lower
abatement. We show that both these opposing effects depend on the coali-
tion size: when the coalition is small, each signatory internalizes damages
on a small number of countries, while exploits its leadership advantage on a
larger number of nonsignatories, but as the coalition size increases the dam-
age internalization effect is augmented while the leadership effect diminishes.
There is a critical coalition size at which the two effects offset each other
and thus, emissions and abatement and therefore welfare of signatories and
nonsignatories become equal, that is, they return to their non-cooperative
levels.
We solidly associate this critical size to the smallest size of a stable

coalition2 and thus, we are able to identify its determinants: Under the
assumptions of concave benefits and convex damages and abatement costs,
nonsignatories respond to an increase in the coalitions net emissions by de-
creasing their own emissions and increasing their abatement. An improve-
ment in abatement technology that reduces the slope of the marginal cost
of abatement makes nonsignatories’reaction functions more responsive, al-
lowing signatories to further exploit their leadership position. Thus, the two
effects identified above become equal at a higher coalition size, yielding a
larger stable coalition. However, since stable coalitions are closely associated
to the critical size that yields the non-cooperative outcome, any stable coali-
tion, regardless of its size, yields minimal welfare improvements. It is also
clear that if decisions in the second stage are made simultaneously, only very
small coalitions can be stable since there is no leadership effect. Therefore, in
this two-stage game framework and under the assumption of concave-convex
functions, it is the leadership effect that facilitates larger stable coalitions;
furthermore, the leadership effect becomes stronger as abatement costs de-
crease and damages are substantial. However, reductions in net emissions
attained by the coalition are obtained even when all countries act indepen-
dently. Thus, the paradox of cooperation simply describes situations in which
the free-riding incentives that exists when there are substantial benefits from

2Using general functonal forms we cannot exclude the posibility that there is another,
larger stable coalition, although we are not able to find specifi functional forms that yield
more than one stable coalition.
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emissions and damages from net emissions, are reduced or even eliminated
by the improvements in abatement technology.
To the best of our knowledge, McGinty (2020) is the first to explain the

paradox of cooperation by identifying the damage internalization and the
leadership effects. However, it does so using specific functional forms in a
model with abatement as the only choice variable and without mentioning
positivity constraints. The paper further considers transfer schemes relax-
ing the assumption of symmetric countries. Finus et al. (2021), extend the
analysis using general functional forms also in a model using abatement as
the only choice variable. This paper’s focus is in examining the role of adap-
tation, which is considered as a separate choice variable. Since both these
papers set up the model with abatement as the only choice variable, their
analysis takes into account only benefits from global abatement and cost of
abatement. In contrast, by separating the choice of emissions from abate-
ment, apart from creating a more realistic framework, it allows us to provide
clear intuition at all steps of the analysis. We are able to demonstrate that
the result coined as paradox of cooperation is not paradoxical at all: assum-
ing net emissions inflict large damages relative to benefits from emissions, if
abatement costs are high the only way to decrease net emissions is by de-
creasing production and consumption, which naturally poses a limit on the
size of the coalition; if abatement costs are low, countries engage extensively
in abatement, eliminating most, or even all, emissions and enjoy the benefits
from production and consumption which though can be attained by countries
acting independently.
The above literature builds on a framework that highlights the existence

of strong free-riding incentives which are moderated only when forming coali-
tions is not relevant, in the sense that it does not provide any welfare benefits
over non-cooperation. However, this pessimistic result depends on a number
of assumptions: Karp and Simon (2013), using an abatement model and drop-
ping the assumption of strictly convex abatement costs, show using specific
examples that larger coalitions are stable and yield significant welfare bene-
fits. Furthermore, if R&D investments that reduce abatement costs exhibit
increasing returns to scale, Barret (2006) shows that even the grand coali-
tion is stable. In general, technology agreements and R&D cooperation are
considered as club goods whose attractiveness may outweigh the incentive to
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free-ride,3 the same as linking trade to environmental agreements. Optimistic
results are also obtained if we assume that countries are farsighted, that is,
when a country contemplating joining or leaving the coalition takes into ac-
count all other countries’participation decisions.4 More recently there is an
interesting debate as to whether introducing adaptation as a choice could
lead to larger stable coalitions.5

The rest of the paper is organized as follows. Section 2 lays out the
model. Section 3 presents the results using general functional forms. Section
4 provides the specific example of quadratic benefit, damage and abatement
cost functions and derives complete analytical solutions that enhance the
intuition of the previous Section’s results. It also provides some simulation
results to highlight some important comparative statics. The last Section
concludes the paper.

2 The Model

We assume that there exist n symmetric countries, N = {1, . . . , n}. Pro-
duction and consumption activities in each country i, i ∈ N , yield benefits
but they also generate emissions, ei > 0, of a global pollutant. Aggregate
emissions of the global pollutant, E =

∑n
i=1 ei , generate damages in each

country. Each country, responding to the adverse effects of emissions, could
engage in mitigation consisting of activities that reduce emissions either by
reducing production and consumption, or by engaging in abatement xi > 0.
Country i assumes the complete cost of its mitigation effort while the benefits
are spread globally: while country i’s emissions create a negative external-
ity, its abatement efforts generate a positive externality. Therefore, countries
participate in a decision game with two choice variables: emission and abate-
ment.
Country i’s social welfare, Wi, is defined as the total benefits country i

receives from emitting, that is, from production and consumption activities,

3See for example Hoel and de Zeeuw (2010) and Goeschl and Perino (2012).
4Diamantoudi and Sartzetakis (2015) and (2018), de Zeeuw (2008), and Osmani and

Tol (2009). However, Benchekroun and Chaudhuri (2012), using a farsighted stability
concept, find that eco-innovations can reduce the stability of IEAs.

5Breton and Sbragia (2017), Benchekroun et al. (2017), Bayramoglu et al. (2018),
Rubio (2018) and Finus et al. (2021).
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Bi(ei), minus the environmental damages, Di(NE), suffered from the aggre-
gate global net emissions, NE = E − X, defined as the difference between
global emissions E and global abatement X =

∑n
i=1 xi. To complete the de-

finition of country i’s net benefits, we subtract the cost of abatement, Ci(xi).
Since countries are assumed to be identical we henceforth drop the subscripts
and the individual country’s welfare function is,

W = B(ei)−D(NE)− C(xi).

We assume that B(ei) is strictly concave, that is, B (0) = 0, B′ ≥ 0 and
B′′ < 0. We further assume that environmental damages D(NE) are strictly
convex in net emissions, that is, D (0) = 0, D′ (NE) ≥ 0 and D′′ (NE) > 0.
Finally, we assume that the cost of abatement is strictly convex, that is
C(0) = 0, C ′ ≥ 0 and C ′′ > 0.

3 General results

Ratification of the IEA is depicted by the formation of a coalition. In partic-
ular, a set of countries S ⊂ N sign an agreement and N\S do not. Let the
size of coalition be denoted by |S| = s, the coalition’s aggregate net emissions
by NEs = Es−Xs while each member’s net emissions are nes = es−xs, such
that NEs = snes. In a similar manner, each nonsignatory’s net emissions
are nens = ens − xns, giving rise to a total emission level generated by all
nonsignatories NEns = Ens−Xns = (n−s)nens. The aggregate net emission
level is, NE = NEs +NEns = snes + (n− s)nens.
Nonsignatories behave non-cooperatively after having observed the choice

of signatories. Therefore, their maximization problem gives rise to an indirect
welfare function wns as follows:

wns(es, xs, s) = max
ens,xns

[B(ens)−D [snes + (n− s− 1)nens + nens]− Cns(xns)] .

Taking into account that ∂NE
∂ens

= 1 and ∂NE
∂xns

= −1, at the optimum, nonsigna-
tories’emission and abatement satisfy the conditions,

B′(e∗ns(es, xs, s, xns)) = D′(NE), (1)

C ′(x∗ns(xs, es, s, ens)) = D′(NE), (2)
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where, D′(NE) = ∂D(NE)
∂NE

and NE = s (es − xs) + (n − s)(e∗ns(es, xs, xns) −
x∗ns(es, xs, ens)). The solution of the above system yields the best response
functions Re = e∗ns(es, xs, s) and Rx = x∗ns(es, xs, s).
Expressing the first order conditions (1) and (2) in terms of the coali-

tion’s aggregate emissions and abatement, Es = ses and Xs = sxs, we can
differentiate both with respect to NEs = s(es − xs) and solve to obtain the
slope of nonsignatories’reaction functions around their equilibrium values,

Re′ =
∂e∗ns (Es, Xs)

∂NEs
=

−1

(n− s) (1− ψ)− φ (3)

Rx′ =
∂x∗ns (Es, Xs)

∂NEs
=

−ψ
(n− s) (1− ψ)− φ (4)

where φ ≡ B′′(e∗ns(Es,Xs))
D′′(NE)

< 0 and ψ ≡ B′′(e∗ns(Es,Xs))
C′′(x∗ns(Es,Xs))

< 0, given B′′ < 0,
D′′ > 0, and C ′′ > 0. Since the denominator of both (3) and (4) is positive,
the slope of nonsignatories best response functions take values in the follow-
ing ranges: −1

(n−s) < Re′ 6 0 and 1 > Rx′ > 0. Responding to an increase
in signatories’net emissions, nonsignatories decrease their emissions and in-
crease their abatement. Combining equations (3) and (4) yields the slope of
the best response of nonsignatories’net emissions RNe′ = −(1−ψ)

(n−s)(1−ψ)−φ < 0,
given that both φ and ψ are negative.
Before turning to signatories’choices, we examine the effect that changes

in the slope of marginal damages, D′′(NE), and marginal abatement cost,
C ′′(x∗ns (Es, Xs)) have on the slope of nonsignatories reaction functions, hold-
ing the benefit function unchanged. If new discoveries about the effect of
net emissions yield a higher D′′(NE), the value of φ increases yielding a
decrease in the denominator of both (3) and (4) and thus, both emissions
and abatement reaction functions become more responsive. The overall ef-
fect of a change in D′′(NE) on the absolute value of RNe′ is positive since
∂|RNe′|
∂φ

= 1−ψ
[(n−s)(1−ψ)−φ]2

> 0. If R&D investment in abatement cost lowers
C ′′(x∗ns (Es, Xs)), the absolute value of ψ increases and thus, the less re-
sponsive the emission reaction function becomes but the more responsive the
abatement reaction function becomes. Overall, a decrease in C ′′(x∗ns (Es, Xs))

makes nonsignatories’net emissions reaction function more responsive since
∂|RNe′|
∂ψ

= φ

[(n−s)(1−ψ)−φ]2
< 0.
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Signatories maximize the coalition’s welfare, sws, taking explicitly into
account nonsignatories’ behavior. Similarly, the coalition’s maximization
problem yields an indirect welfare function ωs as follows:

ws(s) =
1

s
max
es,xs

[sB (es)− sD [snes + (n− s)ne∗ns]− C(xs)] .

The signatories’emissions e∗s(s) and abatement x
∗
s(s) at the equilibrium sat-

isfy the following conditions,

B′(e∗s(s, xs)) = D′(NE∗)
∂NE∗

∂es
, (5)

C ′(x∗s(s, es)) = D′(NE∗)
∂NE∗

∂xs
. (6)

where,NE∗ = s (e∗s(s, xs)− x∗s(s, xs))+(n−s) (e∗ns(es, xs, xns)− x∗ns(es, xs, ens)).
The derivatives of aggregate net emissions around the equilibrium values
e∗s(s) and x

∗
s(s) are:

∂NE∗

∂es
= s+(n−s)

(
∂e∗ns(es,xs))

∂es
− ∂x∗ns(es,xs))

∂es

)
and ∂NE∗

∂xs
=

−s + (n − s)
(
∂e∗ns(es,xs))

∂xs
− ∂x∗ns(es,xs))

∂xs

)
. The solution of the above system

yields the equilibrium emission and abatement levels for the signatories e∗s(s)
and x∗s(s).
Proposition 1 extends the result derived in Diamantoudi and Sartzetakis

(2015) to the case in which emissions and abatement are treated as separate
choice variables. Similar to the case that emissions is the only choice variable,
we establish that there exists a critical coalition size, below which signatories
emit more, abate less and attain higher welfare than the non-signatories and
above which the reverse is true. This critical size is determined by adjusting,
to the lower integer, the value of zmin, where zmin denotes the intersection of
es with ens and of xs with xns and thus, of ws with wns which lies right at the
minimum value of ws. Denote by enc, xnc and Enc the individual country’s
emissions and abatement and the aggregate emissions respectively, in the
purely non-cooperative case, where there is no leader and firms compete a
la Cournot. To simplify the exposition we use the notation φ and ψ defined
above. The proof of Proposition 1 is relegated to Appendix I.

Proposition 1 Consider the indirect welfare functions of signatory and non-
signatory countries, ws(s) and wns(e∗s(s), x

∗
s(s), s) respectively. Let

zmin =
n (1− ψ)− φ

1− φ− ψ
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then,
1. e∗s(s) T e∗ns(s) ⇔ s S zmin and x∗s(s) S x∗ns(s) ⇔ s S zmin,
2. if s = zmin then e∗s(s) = e∗ns(s) = enc and x∗s(s) = x∗ns(s) = xnc,
3. ws(s) increases (decreases) in s if s > zmin (s < zmin),
4. zmin = arg mins∈<∩[0,n] ws(s),
5. ws(s) T wns(e

∗
s(s), x

∗
s(s), s)⇔ s S zmin.

To discuss the intuition of the properties of countries’ choice variables
presented in Proposition 1, recall that what differentiates the behavior of
coalition members from free-riders is that they internalize the damages their
net emissions inflict on all other members of the coalition and they exercise
their leadership power over free-riders. These two effects move in oppos-
ing directions and thus, when they offset each other, coalition’s members
choices are the same as those of the non-members. Formally, nonsignato-
ries in choosing e∗ns and x∗ns according to (1) and (2), they set

∂NE
∂ens

= 1

and ∂NE
∂xns

= −1, while the signatories, in choosing e∗n and x
∗
n according to

(5) and (6), set ∂NE
∂es

= s + (n − s)
(
∂e∗ns(es,xs))

∂es
− ∂x∗ns(es,xs))

∂es

)
and ∂NE

∂xs
=

−s + (n − s)
(
∂e∗ns(es,xs))

∂xs
− ∂x∗ns(es,xs))

∂xs

)
. Given that we assume completely

homogeneous countries, signatories and nonsignatories’first order conditions
differ only in the response ofNE to their choice variables. The slope of the re-
action function of all (n−s) nonsignatories’net emissions to changes in one of
the signatories’emissions, using (3) and (4) and noting that here we differen-
tiate with respect to es and not Es, is ∂NEns

∂es
= (n− s) ∂(e∗ns(es,xs)−x∗ns(es,xs))

∂es
=

−s(n−s)(1−ψ)
(n−s)(1−ψ)−φ . Therefore, the difference between signatories and nonsignatories

optimization conditions, is (s− 1)− s(n−s)(1−ψ)
(n−s)(1−ψ)−φ .

A marginal increase (decrease) in one of the signatories’emissions (abate-
ment) increases marginal damages to all other coalition members and thus,
the term (s− 1) captures the internalization of marginal damages effect: the
increase in each coalition’s member marginal damage coming indirectly from
internalizing the marginal damages all other coalition members (s− 1) suffer
from a marginal increase (decrease) in that member’s emissions (abatement).
In the same time, nonsignatories respond to the increase (decrease) in one of
the signatories’emissions (abatement) by decreasing their net emissions on
aggregate by s(n−s)(1−ψ)

(n−s)(1−ψ)−φ , that is, this term captures the leadership effect:
the decrease in each coalition’s member marginal damage coming indirectly
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through the response of all nonsignatories’net emissions to a marginal in-
crease (decrease) in that member’s emissions (abatement). Setting the dif-
ference equal to zero and solving yields the critical value zmin = n(1−ψ)−φ

1−φ−ψ .

Note that for zmin > x, where x is a positive number, (n − x) > −(x−1)φ
1−ψ

which is true for x = 1, since n > 1, φ < 0 and ψ < 0. As φ decreases an/or
ψ increases, that is as D′′ increases and/or C ′′ decreases relative to B′′, the
higher is the value of zmin.
Coalition members, in choosing collectively their net emissions, take into

account the damages that each member’s net emissions impose on all mem-
bers, and in the same time they exploit their leadership advantage. The size
of these two effects on coalition members’choice of net emissions depends
on the size of the coalition. When the coalition has few members, the first
effect is smaller since lower aggregate damages are internalized, while the
second effect is larger, since the coalition makes gains out of a larger number
of followers. At the critical size of the coalition zmin these two effects offset
each other. For coalition sizes higher than zmin the reverse is true and thus,
the welfare of nonsignatories exceeds that of signatories.
The above results are established in the literature (McGinty, 2019 and

Finus et al., 2021) in the case of a single choice variable. Although techni-
cally the approach is similar, modelling abatement separately from emissions
allows us to take into account both dimensions of the problem, that is, indi-
vidual benefits and global damages from emissions and global benefits and
individual costs from abatement. Given the importance of the critical size
zmin in determining the size of the stable coalition, as we will establish in
what follows, we explore its properties and compare its value to that of the
single choice variable models. Denoting by zmin

x=0 the critical value of the size
of the coalition in the case that emissions is the only choice variable and
utilizing the corresponding value derived in Diamantoudi and Sartzetakis
(2015), zmin

x=0 = n−φ
1−φ , where here φ = B′′(enc)

D′′(Enc)
, since when x = 0, Enc = NEnc,

the following Proposition summarizes the comparison.6

Proposition 2 The critical size of the coalition zmin, at which emissions and
abatement choices of signatories and non-signatories are equal, exceeds the
corresponding critical size of the coalition, zmin

x=0, when emissions is the only

6The proof of Proposition 2 is relegated to Appendix II.
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choice variable.
The difference between them is increasing as abatement becomes cheaper:
(i) As the marginal cost of abatement becomes very steep, that is, C ′′ →∞,
the critical size of the coalition zmin tends to zmin

x=0: lim
C′′→∞

zmin → zmin
x=0.

(ii) As the marginal cost of abatement becomes very flat, that is, C ′′ → 0,
the critical size of the coalition zmin tends to n: lim

C′′→0
zmin → n.

To discuss the intuition of the above results, we compare the slopes of
nonsignatories’reaction functions in the case that abatement is and in the
case it is not an option. As explained above, the slope of the best response of
nonsignatories’net emissions is RNe′ = −(1−ψ)

(n−s)(1−ψ)−φ . In the case that emis-
sions is the only choice variable, the slope of nonsignatories’best response
function is, Re′|x=0 = ∂e∗ns(Es)

∂Es
= −1

(n−s)−φ < 0.7 Therefore, since |RNe′| >
|Re′|x=0|, nonsignatories respond to an increase in the coalition’s net emis-
sions by decreasing their own net emissions faster than in the absence of
the abatement option. As a result, the coalition’s position as a leader is
strengthened, which implies that the leadership effect outweighs the damage
control effect for larger coalition sizes relative to the case that abatement is
not an option. This effect becomes more prominent as the cost of abatement
decreases. That is, the smaller is the cost of abatement, the higher is the
absolute value of ψ and thus, the higher is the difference zmin − zmin

x=0.
The critical coalition size zmin, determined in Proposition 1, can be used

to broadly define the lowest size of a stable coalition and with the help of
the comparison of zmin to zmin

x=0, established in Proposition 2, we can compare
the size of the stable coalition between the case of two choice variables and
the case of only one choice variable. As mentioned earlier, the literature
examined uses the specific two stage game first developed by D ’Aspremont
et al. (1983) which uses the notion of internal and external stability. Formally
a coalition of size s∗ is,

internally stable if ws(s∗) ≥ wns(s
∗ − 1)

and externally stable if wns(s∗) ≥ ws(s
∗ + 1).

7See Diamantoudi and Sartzetakis (2015), p. 543.
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As established in Proposition 1, there exists a critical value zmin, below which
signatories’net emissions and welfare are higher relative to nonsignatories,
and above which the reverse is true. Nonsignatories’welfare attains its lowest
value in the absence of a coalition, the Cournot Nash level wnc. As small
size coalitions start forming, their members’net emissions exceed those of
nonsignatories, Nes(s) > Nens(s), and thus, signatories’welfare level exceeds
that of nonsignatories, ws(s) > wns(s), with wns(s) dropping below wnc.
As the size of coalitions increases, their members’ net emissions decrease
relieving the pressure from nonsignatories whose welfare starts increasing
while that of signatories decreases. At the critical size zmin, net emissions
of both signatories and nonsignatories, and thus their welfare level, return
back to their Cournot Nash levels. For higher coalition sizes nonsignatories’
welfare function is always above that of signatories. Although we are able to
determine that ws(s) is monotonically increasing in s after zmin, the same is
not possible for wns(s).
If one member exits the coalition of size s, the welfare of nonsignatories

becomes wns(s − 1), which is a function with the same properties as wns(s)
shifted by one. That is, the wns(s−1) function will cut from below the ws(s)
function at a coalition size higher than zmin. Adjusting this critical size to the
lower integer, yields the size of a stable coalition, denoted by s∗1, since below
that ws(s∗1) ≥ wns(s

∗
1 − 1) and above that wns(s∗1) ≥ ws(s

∗
1 + 1). For general

functional forms it is impossible to either define the value of s∗1 or claim its
uniqueness: Depending on the slope of ws(s) around zmin, the size of stable
coalition s∗1 could be very close of far away from zmin. Given that we cannot
determine that wns(s) is monotonically increasing, the wns(s−1) curve could
intersect from below ws(s) also at higher coalition sizes. This is the reason
that in the literature specific functional forms are used to determine the size
of stable coalitions; in the next Section we provide an example. However,
we can discuss the effect that changes in the benefit, damage and abatement
cost have on the lowest size of a stable coalition, utilizing the results of
Proposition 2.
It is evident, from the expressions zmin = n(1−ψ)−φ

1−ψ−φ and zmin
x=0 = n−φ

1−φ , that
in the case abatement is not an option, or an extremely expensive one driving
ψ to zero, the only determinant of zmin

x=0 is the φ = B′′(enc)
D′′(Enc)

ratio. When bene-
fits are far larger than damages, zmin

x=0 becomes smaller since there is no value
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gained from an agreement. When damages become more prominent driving
φ to zero, zmin

x=0 tends to n: as damages increase, even the grand coalition
becomes an option. However, as damages become very high, large coalitions
require that their members reduce their emissions drastically to internalize
very large externalities over many countries, which in the case that abate-
ment is not a viable option implies that they drastically decrease production
and consumption and, depending on the functional forms of benefits and
damages, could require drastic reductions in, or even negative, production
and consumption. For example, in the case of quadratic benefit and dam-
age functions, Diamantoudi and Sartzetakis (2006) show that, constraining
emissions to be positive, the stable coalition’s maximum size is 4. Larger
coalitions become stable if one ignores the positivity constraint, which have
been ignored in some works using abatement as the only choice variable.
When abatement becomes a viable option, separate from emissions, the

ratio ψ = B′′(enc)
C′′(NEnc)

plays an important role in determining the value of zmin, in
addition to φ. As noticed already, when the rate of the increase in abatement
costs is much higher that the rate of the increase in the benefits from produc-
tion and consumption, that is as ψ → 0, then zmin → zmin

x=0. When abatement
is very expensive we have the problems described above, restricting the size
of stable coalitions. However, when the cost of abatement decreases such
that ψ becomes much higher than φ, then larger stable coalitions are stable.
That is, for given benefits, the less costly abatement is relative to damages,
the higher is the stable coalition.
Although the low cost abatement option can lead to large stable coali-

tions, the welfare gains that such coalitions attain are very small. This is
because zmin yields the lowest possible welfare level for both signatories and
nonsignatories and thus, s∗1, regardless of how much higher than zmin is,
yields a welfare level close to wnc. Although this has has been termed in the
literature as "green paradox" or "paradox of cooperation" (see for example
Barret, 1994 and Finus et al., 2021), in light of the above discussion, it is
not paradoxical at all. Countries facing large damages from net emissions
and having available low cost abatement, engage extensively in abatement,
eliminating most, or even all, emissions and enjoy the benefits from produc-
tion and consumption. However, under such conditions, engaging in high
abatement levels is individually rational, that is, a collective agreement at-
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tains very little, if any, welfare improvement. When abatement costs are
low relative to damages, the difference between the welfare achieved when
all countries act as singletons and the welfare the grand coalition achieves
becomes very small. The above discussion is summarized in the following
Corollary.

Corollary 1 When emissions and abatement are modeled separately, larger
coalitions become stable when the rate of the increase in abatement cost is
much less that the rate of the increase in damages. However, large coali-
tions become stable only when they can offer very little improvement to global
welfare.

When abatement is very cheap countries can increase their production
and consumption, since they can eliminate all generated emissions costessly:
all countries could join such a coalition that requires no effort and attains
the highest possible welfare, which though they can also achieve acting inde-
pendently.
Before providing a specific example assuming quadratic functions, a note

is in order regarding the case that the coalition has no leadership power. In
such a case, members of any size coalition choose lower emissions relative
to nonsignatories, since they internalize the externalities on all coalition’s
members and cannot exercise any power over outsiders. Therefore, starting
from a welfare level wnc for all countries, as a coalition of two countries
forms the welfare of signatories is lower than that of nonsignatories and their
difference increases as the size of the coalition increases. Given that in this
case both ws and wns are monotonically increasing in s, only one stable
coalition exists which lies to the right of zmin = 1. In the case of quadratic
functions the literature, using a single choice variable, has shown that the
maximum size of a stable coalition is two. Since there is no leadership effect,
nothing changes in the case we model abatement separately from emissions.
Therefore, large coalitions can be stable only if the coalition acts as a leader
and abatement costs are not very high relative to damages from emissions.
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4 Specific example: quadratic functions

Following the literature, we assume quadratic benefits, Bi(ei) = b(aei− 1
2
e2
i ),

with a > 0 and b > 0 and quadratic damages from aggregate net emissions,
Di(NE) = 1

2
c(NE)2, with c > 0. We further assume that country i’s cost of

abatement is quadratic, Ci(xi) = 1
2
dx2

i , with d > 0. Therefore, country i’s
social welfare is,

Wi = b(aei −
1

2
e2
i )−

1

2
c(NE)2 − 1

2
dx2

i . (7)

Before examining the maximum size of stable, self-enforcing coalitions, we
present the two benchmark cases: pure non-cooperation and full cooperation.
In the pure non-cooperative case, we assume that, in the first stage, all

countries act individually and no coalition is formed. In the second stage,
each country i chooses ei and xi in order to maximize its own welfare Wi,
given in (7), taking the other countries’ emission and abatement levels as
given. The first order conditions, ∂Wi

∂ei
= 0 =⇒ ba − bei = cNE, and

∂Wi

∂xi
= 0 =⇒ cNE = dxi, yield country i’s emission and abatement as

functions of the rest of the countries’net emissions, NE−i =
∑

j 6=i(ej − xj),

ei(NE−i) =
(1 + δ) a

1 + δ + γδ
− γδNE−i

1 + δ + γδ
, (8)

xi(NE−i) =
a

1 + δ + γδ
+

NE−i
1 + δ + γδ

, (9)

respectively, where γ = c
b
and δ = d

c
. The parameter γ is the ratio between

the constant slope of marginal damages from net emissions and the constant
slope of marginal benefits from emissions and δ is the ratio between the
constant slope of marginal abatement cost and the constant slope of marginal
damages from net emissions. We use a different notation from the one used
in the previous Section, to avoid inappropriately confusing this particular
example, in which third order derivatives are assumed zero, to the general
case examined before. Notice that in this particular example, B′′(ei) = −b,
D′′(NE) = c, and C ′′(xi) = d at any level of emissions and abatement and
thus, we can write φ = −1

γ
and ψ = −1

γδ
. However, φ and ψ take different values

depending on the functional forms used and in general are not independent
of emissions and abatement.
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Country i’s best reaction to an increase in the rest of the countries’net
emissions is to decrease its own net emissions both by decreasing its emis-
sions, the slope of the emission reaction function is ∂ei(NE−i)

∂NE−i
= − γδ

1+δ+γδ
, and

by increasing its abatement effort, the slope of the abatement reaction func-
tion is ∂xi(NE−i)

∂NE−i
= 1

1+δ+γδ
. It is interesting to note that the speed of reaction

of emission exceeds that of abatement if γδ > 1 =⇒ d > b, that is, when the
slope of the marginal cost of abatement exceeds the slope of the marginal
benefits from emission: If benefits from emissions are relatively higher, coun-
try i adjusts mostly by increasing abatement, while when abatement costs
are relatively higher, it adjusts by primarily reducing emission.
Since all countries are symmetric, at the equilibrium they all choose the

same level of emissions, denoted by enc, and abatement, denoted by xnc. The
system of reaction functions (8) and (9) yields the non-cooperative level of
emission and abatement, enc = (n+δ)a

δ+(1+γδ)n
and xnc = na

δ+(1+γδ)n
. Therefore, each

country’s net emissions Nenc are, Nenc = enc − xnc = δa
δ+(1+γδ)n

.8 Aggregate
emission and abatement levels under the non-cooperative case are, Enc =

nenc = n a(n+δ)
δ+(1+γδ)n

and Xnc = nxnc = n an
δ+(1+γδ)n

, respectively and therefore
net emissions are, NEnc = Enc −Xnc = n aδ

δ+(1+γδ)n
.

In the case of full cooperation, we assume that in the first stage the grand
coalition is formed and is stable. In the second stage emission and abatement
decisions are taken collectively, that is, countries choose ei and xi so as to
maximize aggregate welfare,

∑n
i=1Wi, where Wi is given in (7).

We use the notation defined above and we denote equilibrium values
of emission and abatement levels by a subscript c, ec = a(n2+δ)

n2+δ+n2γδ
, xc =

an2

n2+δ+n2γδ
. Thus, each country’s net emissions Nec are, Nec = ec − xc =

δa
n2+δ+n2γδ

.9 Aggregate emission and abatement levels under the full cooper-

ation case are, Ec = nec = n a(n2+δ)
n2+δ+n2γδ

and Xc = nxc = n an2

n2+δ+n2γδ
, respec-

tively and therefore net emissions are, NEc = Ec −Xc = n aδ
n2+δ+n2γδ

.
Country i’s net emissions are lower in the full cooperation case, i.e. ec −

xc < enc−xnc. In the full cooperation case, each country emits less (ec < enc)

8In the absence of net environmental damages, c = 0, emissions take their highest
value, encpc=0 = a, and abatement effort approaches zero, xncpc=0 = 0. Also, if abatement
becomes costless, d = 0, countries choose the highest level of emissions, encpd=0 = a, since
they can costlessly abate the total amount of emissions, xncpd=0 = a.

9In the two extreme cases of c = 0 and d = 0, emissions and abatement take the same
values as in the case of non-cooperation.
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and abates more (xc > xnc) relative to the non-cooperative case. That is,
aggregate net emissions are lower when all countries cooperate. It can also
be shown that aggregate welfare is higher under full cooperation.

4.1 Coalition formation

We now move to examine the stable size of the coalition. Using the nota-
tion established in Section 3, aggregate net emissions are, NE = E − X =

s (es − xs) + (n− s) (ens − xns). Substituting total net emissions of the rest
of the countries,

∑
j 6=i(ej − xj) = NEs + (n − s − 1) (ens − xns), where

NEs = s (es − xs), into the reaction functions (8) and (9), we calculate
nonsignatories’ reaction functions, Re = ens(es, xs) and Rx = xns(es, xs).
For brevity, we only report nonsignatories net emissions’reaction function,10

RNe = Nens(NEs) =
δa

δ + (1 + γδ) (n− s) −
(1 + γδ)NEs

δ + (1 + γδ) (n− s) . (10)

It is clear that when all countries act as singletons, s = 0, the above
collapses to the Nash equilibrium, Nens|s=0 = Nenc, where Nenc is defined
by subtracting xi(NE−i) (9) from ei(NE−i) given in (8). Furthermore, in the
absence of damages, c = 0, RNe|c=0 = a, while when abatement is costless,
d = 0, RNe|d=0 = 0. Finally, if abatement was not an option, which is the
same as if it was extremely expensive, that is, d → ∞, then xns = xs → 0

and RNe|d→∞ → a
1+γ(n−s) −

γ
1+γ(n−s)ses, which is exactly the same reaction

function as the one reported in Diamantoudi and Sartzetakis (2006).
We can compare the slopes of the net emission reaction functions with

and without the option of abatement to verify and extent the discussion in
Section 3. It is clear that when technological advancements reduce the cost of
abatement substantially, non-signatory countries adjust their net emissions,
responding to a change in the coalition’s emissions, faster relative to when
abatement is not an option. Denote the slope of the reaction function in
(10) by RNe′ = ∂Nens(NEs)

∂NEs
= − (1+γδ)

δ+(1+γδ)(n−s) and the slope in the absence
of abatement option by RNe′|xs=0 = ∂ens

∂Es
= − γ

1+γ(n−s) .
11 Then, |RNe′| −∣∣RNe′|xs=0

∣∣ = 1
[1+γ(n−s)][δ+(1+γδ)(n−s)] > 0, which goes to zero as d → ∞ and

10The emission and abatement reaction functions will have the same numerators as (8)
and (9) respectively and the same denominator as the one in the following expression (10).
11See Diamantoudi and Sartzetakis (2006), p. 251.
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thus δ →∞ and becomes larger the smaller is the slope of the marginal cost
of abatement. Thus, nonsignatories adjust faster to the signatories choices
as the abatement option becomes cheaper, which implies that the leading
coalition can exercise more pressure on singletons when abatement becomes
cheaper.
Signatories maximize the coalition’s welfare, sWs, taking explicitly into

account nonsignatories’ behavior ens (es, xs) and xns (es, xs). Given these,
aggregate net emissions depend only on signatories’choices, NE(es, xs) =

s (es − xs) + (n− s) (ens (es, xs)− xns (es, xs)). That is, signatories choose es
and xs in order to maximize collective welfare,

max
es, xs

∑
Ws = s [Bs(es)−Ds (NE(es, xs))− Cs(xs)] .

The first-order conditions of the above maximization problem yield sig-
natories emission and abatement effort levels,

es = a

(
1− nsγδ

2

Ψ

)
, (11)

xs = ans
δ

Ψ
, (12)

where Ψ = Ω2 + s2δ (1 + γδ) > 0 and Ω = δ + (n − s) (1 + γδ) > 0. Note
that, in the absence of environmental damages, c = 0, emissions take their
highest value es|c=0 = a, and abatement effort is zero, xs|c=0 = 0. Therefore,
the signatories’net emissions are,

Nes = es − xs = a

(
1− nsδ(1 + γδ)

Ψ

)
. (13)

Thus, the coalition’s total net emissions are,NEs = Es−Xs = sa
(

1− ns δ(1+γδ)
Ψ

)
.

Substituting es and xs into the non-signatories’ reaction functions, we
derive the non-signatories’emission and abatement level,

ens = a

(
1− nγδΩ

Ψ

)
= es +

anγδ (δs− Ω)

Ψ
, (14)

xns =
anΩ

Ψ
= xs −

an (δs− Ω)

Ψ
. (15)

From (14) and (15), the net emission level of the non-signatories is,

Nens = ens−xns = a

(
1− nΩ(1 + γδ)

Ψ

)
= Nes+

an(1 + γδ) (δs− Ω)

Ψ
. (16)
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The above imply that ens S es ⇔ δs S Ω, xns T xs ⇔ δs S Ω and

Nens S Nes ⇔ δs S Ω. We will explore this condition further when we
compare the welfare of signatories to that of non-signatories. At this point
note that since for small coalition sizes Ω > δs regardless of the value of the
parameters, when coalition size is small non-signatories emit less and abate
more than the signatories. For small coalition sizes, the leadership effect
dominates the damage reduction effect.
Nonsignatories’aggregate net emissions are, NEns = Ens − Xns = (n −

s)
[
Nes + an(1+γδ)(δs−Ω)

Ψ

]
. Therefore, global net emissions NE = E − X =

(Ens −Xns) + (Es −Xs) are, NE = E −X =
∑n

i=1(ei − xi) = an δΩ
Ψ
.

Unlike the non-cooperative and the full cooperation cases, in which the
level of emission are strictly positive, enc > 0 and ec > 0, in the coalition
formation case we have to restrict the parameters of the model in order to
guarantee interior solutions. Therefore, we need to restrict the parameters
so that both are positive, given that emissions correspond to production and
consumption which cannot be negative. The following Lemma establishes
the necessary conditions for interior solutions. The proof is presented to
Appendix III.

Lemma 1 In the case that abatement is not available, that is, δ →∞, es > 0

and ens > 0 if and only if 0 < γ < 4
n(n−4)

and n > 4. As abatement becomes
relatively inexpensive, es > 0 and ens > 0 hold for higher values of γ, which
are increasing as δ decreases.

The intuition of the above result is clear: as abatement becomes available
at low cost, countries both in and outside the coalition are able to decrease
their net emissions by engaging in abatement keeping their emissions and thus
their production positive, even when damages from emissions are relatively
high. This will prove very important for the determination of the maximum
size of the stable coalition that follows.
Substituting the equilibrium values of the choice variables from (11), (12),

(14) and (15) we derive the indirect welfare function of signatories (ws) and
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non-signatories (wns),

ws =
ba2

2

(
1− γn2δ2

Ψ

)
, (17)

wns =
ba2

2

[
ws −

γδn2
(
δ2s2 − Ω2

)
(1 + δγ)

Ψ2

]
. (18)

Utilizing the above results, Proposition 3 establishes the properties of these
indirect welfare functions, applying the results in Proposition 1 to the specific
example of quadratic functions. The proof of Proposition 3 follows the same
steps as in the general case and applied for the case of quadratic functions
and a single choice variable in Diamantoudi and Sartzetakis (2006).12 ,13

Proposition 3 We consider the indirect welfare function of signatories and
non-signatories, (ws) and (wns) respectively. If we define smin = δ+(1+δγ)n

1+δ+δγ
,

then,
(i) smin = arg mins∈<∩[0,n] ws(s), that is, smin is the s at which ws is mini-
mized,
(ii) ws(s) increases in s if s > smin and it decreases in s if s < smin,
(iii) wns(s) ≶ ws(s) for all s ≶ smin.

The above defined properties of the indirect welfare function imply that
the indirect welfare function of the non-signatories cuts the indirect welfare
function of the signatories from below at its minimum, defined by smin. Note
that smin solves Ω = δs, that is, the welfare of the signatories takes its min-
imum value at the coalition size that equalizes the emission and abatement
of signatories and non-signatories.
We know from Section 3 that there are two effects that make coalition

members’choices different from those of outsiders: the effect of internalizing
damages of all members and the leadership effect which work in opposite
directions. At the critical size of coalition smin these two effects offset each
other and thus, signatories and nonsignatories choices are the same as in the
absence of a coalition. The damage internalization effect is (s− 1) and, in

12The proof is available to the interested reader upon request.
13Notice that if we substitute the values φ = −1

γ and ψ = −1
γδ , into the definition of z

min

defined in Proposition 1, yields the definition of smin.
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this particular example, the leadership effect is −s(n−s)(1+γδ)
(n−s)(1+γδ)+δ

. The sum of
these two effects is δs−Ω

(n−s)(1+γδ)+δ
, which becomes zero for Ω = δs.

In the case that countries choose only their emission level, Diamantoudi
and Sartzetakis (2006) find that the critical coalition size at which wns(s) =

ws(s), is smin
x=0 = 1+γn

1+γ
, which is clearly increasing in γ, for n > 1. Furthermore,

Diamantoudi and Sartzetakis (2006) associate the size of the stable coalition
to the integer closer to smin

x=0 and after restricting the admissible values of γ
in order to have positive emissions, the size of stable coalitions is limited to
s∗x=0 ∈ {2, 3, 4}. In the present case, it is clear that when abatement costs
are very low, lim

δ→0
zmin → n which is the specification of the general result

presented in Proposition 2 to the quadratic case. The case that abatement
cost are very high, δ →∞ corresponds to the case that abatement is not an
option and we go back to the results obtained in Diamantoudi and Sartzetakis
(2006).
The following Corollary compares the case in which emission is the only

choice variable with the case we develop in the present paper.

Corollary 2 Allowing countries to choose abatement separately from emis-
sion level increases the size of the stable coalition for any admissible values
of benefits damages and cost parameters. This potential enlargement of the
coalition size is increasing as the cost of abatement decreases.

Direct comparison of the two cases reveals that smin > smin
x=0, for δ > 0

and n > 1. Furthermore, ∂s
min

∂δ
= 1−n

(1+δ+δγ)2
< 0, that is, recalling that δ = d

c
,

as either the cost of abatement decreases or environmental damages increase,
the higher is the size of stable coalition. In what follows we illustrate the
above results by considering numerical examples.

4.2 Illustration of the results using simulations

To facilitate the comparison to the case that abatement is not a separate
choice variable, we choose the same parameter values used in Diamantoudi
and Sartzetakis (2006). That is, we assume the following values for the
parameters: n = 10, a = 10, b = 6, and c = 0.39999, which results in
γ = 0.066665. These values satisfy the restrictions set in Lemma 1, since the
parameter γ is less than γ < 4

n(n−4)
< 0.066667. We also choose a small value
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Figure 1: Defining the size of a stable IEA

for the parameter δ, such that c > d, which means that marginal damage
increases faster than marginal abatement cost. We choose d = 0.239994, so
that given c = 0.39999, we have δ = 0.6.
In Figure 1, we plot, using the above defined parameter values, the indi-

rect welfare functions against different coalition sizes s. The red curve depicts
ws(s), the purple curve wns(s) and the orange curve wns( s− 1). Notice that
wns(s− 1) is a horizontal shift of wns(s).
As Figure 1 illustrates, no country wants to exit or join a coalition of

seven, that is, a coalition of seven is stable, s∗ = 7. The internal condition
ws(s

∗) ≥ wns(s
∗ − 1) is satisfied since ws(7) > wns(6), as the ws(s) curve is

above the wns(s − 1) curve. Moreover, coalition s∗ = 7 is externally stable
i.e. ws(s∗+1) ≤ wns(s

∗) since at s = s∗+1 = 8 the wns(s−1) curve is above
the ws(s) curve. Therefore, the coalition of size s∗ = 7 is stable.
Similar to the analysis in Diamantoudi and Sartzetakis (2006) the stable

coalition size is the higher integer following the size of the coalition for which
the welfare of the signatories is at its minimum, smin and for which ws = wns.
In our example, smin = 6.70732.
The above specified parameter values satisfy the constraints for es > 0,

ens > 0, es − xs > 0 and ens − xns > 0 and also the internal and external
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stability conditions. Note that for the same parameter values, the optimal
size of the coalition in Diamantoudi and Sartzetakis (2006) is s∗ = 3. The
following Table summarizes the results of the simulations. The first column
reports the equilibrium values of emissions, abatement, net emissions and
welfare for signatories, the second column for non-signatories and the last
column reports the aggregate values.

s∗ = 7 n− s∗ n
e 9.622 9.665 96.347
x 9.456 8.376 91.322

e− x 0.165 1.289 5.025
w 283.8 286.2 2, 845.2

Table 1. Coalition formation with abatement for δ = 0.6

These values confirm that signatories emit less and abate more than non-
signatories, i.e. es < ens and xs > xns. Moreover, the net emissions are
significantly smaller for the signatories, es−xs, than for the non-signatories,
ens − xns. Total net emissions,

∑n
i=1(ei − xi), include the activities from

both signatories and non-signatories.
Total net emissions are slightly smaller relative to the non-cooperative

case, NEnc = 5.4545, but much larger than the full cooperation case, NEc =

0.5736. The welfare level each of the seven members of the coalition attains
is slightly over the one they attain at the non-cooperative case wnc = 283.736

and thus the total welfare improvement attained by the coalition is almost
negligible and derives from the gains of free-riders.

4.2.1 Comparative statics with respect to abatement cost

In the simulations presented above we used a value for the parameter δ that
is below 1, indicating that the abatement cost parameter d is smaller than
the emission damage parameter c. In particular we have used the value
δ = 0.6. In order to show the effect of changes in the abatement cost which
change the ratio δ, we simulate the model for two extreme values of δ, namely,
δ = 0.0000001 and δ = 1.637. The first case indicates that abatement cost is
negligible relative to environmental damages, while in the second we assume
that abatement costs exceed environmental damages. Table 2 presents the
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results of the simulations: in the left the case with significantly high abate-
ment cost is presented, which results in s∗ = 5 and in the right the case with
almost zero abatement cost is presented, which yields the grand coalition,
s∗ = 10.

δ = 1.637 δ = 1 ∗ 10−7

s∗ = 5 n− s∗ n s∗ = 10 n− s∗ n
e 9.079 9.192 91.354 10 − 100
x 8.439 7.406 79.229 10 − 100

e− x 0.639 1.785 12.124 1 ∗ 10−8 − 1 ∗ 10−7

w 244.7 250.7 2, 476.0 300.0 − 3, 000.0
Table 2. Coalition formation with abatement under different values of δ

The results of the simulations presented in Tables 1 and 2 reveal that the
value of the parameter δ is crucial in determining the size of the stable IEA.
When δ = 0.6, the size of the stable coalition is s∗ = 7. When δ takes a very
low value, i.e. δ = 0.0000001, the number of signatory countries increases,
reaching the grand coalition, s∗ = 10. When abatement costs are negligible
all countries generate the maximum emissions which they completely abate,
lim
δ→0

e = lim
δ→0

x = a = 10, to attain the maximum benefits. On the contrary,

when δ takes a very high value, i.e. δ = 1.637, the number of signatory
countries decreases to s∗ = 5. Notice though that even when the abatement
cost parameter takes the highest value allowed by the model’s constraints,
presented in Lemma 1, the size of the stable coalition is higher than the case
in which countries have only one choice variable.
When δ approaches zero and the the grand coalition emerges, countries’

net emissions are the lowest possible achieving the highest welfare. Notice
though that as abatement becomes very inexpensive, that is as δ approaches
zero, we also have that, lim

δ→0
enc = lim

δ→0
xnc → a = 10 and thus, lim

δ→0
wnc → 300.

That is, countries choices are the same whether they cooperate or not. When
the abatement cost becomes negligible, indeed the grand coalition is stable,
but it delivers no additional welfare gains relative to the case that countries
decide independently. The following Corollary restates the general result
presented in Corollary 1.

Corollary 3 When the coalition acts as a leader and countries choose emis-
sions and abatement separately, larger coalitions can be stable as abatement
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costs decrease, including the grand coalition when costs are negligible. How-
ever, very small welfare gains over the non-cooperative equilibrium are at-
tained.

When technology drives abatement cost to zero, it is individually ratio-
nal for the countries to abate all their emissions and thus they emit the
highest possible amounts to attain the highest welfare from production and
consumption. As the abatement costs increase, free-riding incentives become
significant and the size of stable coalitions decreases, but remains larger com-
pared to the case that abatement is not an option. All stable coalitions cases
though yield equilibrium values for signatory and non-signatory countries’
welfare that is the same as that they receive acting non-cooperatively. Mod-
elling abatement separately from emissions allows for higher stable coalitions
but this is because free-riding incentives are reduced which implies that the
larger coalitions yield no welfare gains over the non-cooperative case: The
option of abatement enables the coalition to take advantage of its leadership
role for larger coalition sizes.

5 Conclusions

The present paper examines the size of stable IEAs employing a non-cooperative
leadership framework and assuming that countries choose emission and abate-
ment levels separately. We assume benefits are concave in the country’s own
emissions; environmental damages are convex in aggregate net emissions and
convex in the country’s abatement effort. Coalition formation is modelled
as a two stage game: in the second stage, countries choose their levels of
emission and abatement and in the first stage counties choose whether or
not to join a coalition. Within this framework we find using general func-
tional forms that the size of the stable coalition is always larger than in
the case in which countries can choose only their emissions level. As the
cost of abatement decreases free-riding incentives are reduced since countries
can eliminate emissions almost costessly and thus, larger coalitions become
stable. However, the same benefits from reduced abatement costs can be
reaped by countries acting independently. Regardless of the cost of abate-
ment, coalitions acting as leaders can be stable at larger sizes relative to when
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they do not have such advantage, but they achieve this by keeping emissions,
abatement and thus welfare to their non-cooperative levels.
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7 Appendix I: Proof of Proposition 1

Although in our model s is a non-negative integer smaller than n, for the
ease of exposition and calculations in the following proof we use z to denote
a real number taking values from [0, n]. At the end we convert back to integer
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s.
[Parts 1-2] For a coalition size z, we denote the aggregate net emissions level
at the equilibrium by NE∗(z) = s (e∗s(z)− x∗s(z)) + (n− s) (e∗ns(z)− x∗ns(z)),
where e∗ns(z) = e∗ns(e

∗
s(z), x∗s(z), z) and x∗ns(z) = x∗ns(e

∗
s(z), x∗s(z), z). Given

the assumptions regarding countries’ benefit function, B′′ < 0 we have
e∗s(z) T e∗ns(z)⇔ B′ (e∗s(z)) S B′ (e∗ns(z)). In equilibrium we also have,

B′(e∗s(z)) ≡ D′(NE∗(z))
∂NE∗(z)

∂es

∣∣∣∣
es=e∗s(z)

and

B′(e∗ns(z)) ≡ D′(NE∗(z))
∂NE∗(z)

∂ens

∣∣∣∣
ens=e∗ns(z)

.

where the derivative of aggregate net emissions around the equilibrium value
e∗s(s) is:

∂NE∗(z)
∂es

∣∣∣
es=e∗s(z)

= z+(n−z) ∂e∗ns(es,xs))
∂es

∣∣∣
es=e∗s(z)

−(n−z) ∂x∗ns(es,xs))
∂es

∣∣∣
es=e∗s(z)

.

Thus, recalling that D′(E∗(z)) > 0 and ∂NE∗(z)
∂ens

∣∣∣
ens=e∗ns(z)

= 1, in equilib-

rium we have,

e∗s(z) T e∗ns(z)⇔
∂NE∗(z)

∂es

∣∣∣∣
es=e∗s(z)

S 1. (A1)

Furthermore, given the assumption regarding countries’abatement cost
function, C ′′ > 0 we have that x∗s(z) T x∗ns(z)⇔ C ′ (x∗s(z)) T C ′ (x∗ns(z)). In
equilibrium we also have,

C ′(x∗s(z)) ≡ D′(NE∗(z))
∂NE∗(z)

∂xs

∣∣∣∣
xs=x∗s(z)

and

C ′(e∗ns(z)) ≡ D′(NE∗(z))
∂NE∗(z)

∂xns

∣∣∣∣
xns=x∗ns(z)

.

where the derivative of aggregate net emissions around the equilibrium value
x∗s(s) is:

∂NE∗(z)
∂xs

∣∣∣
xs=x∗s(z)

= −z+(n−z) ∂e∗ns(es,xs))
∂xs

∣∣∣
xs=x∗s(s)

−(n−z) ∂x∗ns(es,xs))
∂xs

∣∣∣
xs=x∗s(s)

.

Thus, recalling again that D′(E∗(z)) > 0 and ∂NE∗(z)
∂xns

∣∣∣
xns=x∗ns(z)

= −1, in
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equilibrium we have,

x∗s(z) T x∗ns(z)⇔
∂NE∗(z)

∂xs

∣∣∣∣
xs=x∗s(z)

T −1. (A2)

The first order condition of the non-signatories with respect to their emis-
sions, yield the identity B′(e∗ns(es)) ≡ D′[z (es − xs) + (n − z)(e∗ns(es, xs) −
x∗ns(es, xs))]. Differentiating both sides of this identity with respect to es
yields,

∂e∗ns(es, xs)

∂es
=
zD′′(NE(es))− (n− z)D′′(NE(es))

∂x∗ns(es,xs)
∂es

B′′(e∗ns(es))− (n− z)D′′(NE(es))
. (A3)

Similarly, the first order condition of nonsignatories with respect to their
abatement, yield the identityC ′(x∗ns(es)) ≡ D′[z (es − xs)+(n−z)(e∗ns(es, xs)−
x∗ns(es, xs))]. Differentiating both sides of this identity with respect to es
yields,

∂x∗ns(es, xs)

∂es
=
zD′′(NE(es)) + (n− z)D′′(NE(es))

∂e∗ns(es,xs)
∂es

C ′′(x∗ns(es)) + (n− z)D′′(NE(es))
. (A4)

The solution of the system of equations (A3) and (A4) yields,

∂e∗ns(es, xs)

∂es

∣∣∣∣
es=e∗s(z)

=
−z

(n− z) (1− ψ)− φ , (A5)

and
∂x∗ns(es, xs)

∂es

∣∣∣∣
es=e∗s(z)

=
−zψ

(n− z) (1− ψ)− φ . (A6)

where φ = B′′(e∗ns(Es,Xs))
D′′(NE)

< 0 and ψ = B′′(e∗ns(Es,Xs))
C′′(x∗ns(Es,Xs))

< 0, given B′′ < 0,
D′′ > 0, and C ′′ > 0. From (A5) and (A6) it is clear that the slope of
nonsignatories’ emission reaction with respect to a change in signatories’
emissions is negative around the equilibrium, ∂e

∗
ns(es,xs)
∂es

< 0, while the slope
of the abatement reaction function is positive ∂x∗ns(es,xs)

∂es
> 0.

Substituting (A5) and (A6) into the inequality (A1) yields,

z − z (n− z) (1− ψ)

(n− z) (1− ψ)− φ S 1.
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Which reduces to

e∗s(z) T e∗ns(z)⇔

z S n (1− ψ)− φ
(1− ψ)− φ . (A7)

In a similar manner as above, differentiating with respect to xs the first
order conditions of the non-signatories with respect to their emissions and
abatement yields,

∂e∗ns(es, xs)

∂xs
=
−zD′′(NE(es))− (n− z)D′′(NE(es))

∂x∗ns(es,xs)
∂xes

B′′(e∗ns(es))− (n− z)D′′(NE(es))
. (A8)

∂x∗ns(es, xs)

∂xs
=
−zD′′(NE(es)) + (n− z)D′′(NE(es))

∂e∗ns(es,xs)
∂xs

C ′′(x∗ns(es)) + (n− z)D′′(NE(es))
. (A9)

The solution of the system of equations (A8) and (A9) yields,

∂e∗ns(es, xs)

∂xs

∣∣∣∣
xs=x∗s(z)

=
z

(n− z) (1− ψ)− φ, (A10)

and
∂x∗ns(es, xs)

∂xs

∣∣∣∣
xs=x∗s(z)

=
zψ

(n− z) (1− ψ)− φ. (A11)

Nonsignatories react to an increase in the signatories’ abatement by in-
creasing their emissions, ∂e∗ns(es,xs)

∂xs
> 0, and decreasing their abatement

∂x∗ns(es,xs)
∂xs

< 0.
Substituting (A10) and (A11) into the inequality (A2) yields,

−z +
(n− z) z (1− ψ)

(n− z) (1− ψ)− φ T −1.

Which reduces to

x∗s(z) S x∗ns(z)⇔

z S n (1− ψ)− φ
(1− ψ)− φ . (A12)

As expected, working either from the comparison of signatories to nonsigna-
tories emissions e∗s(z) T e∗ns(z), or from the comparison of their abatement

x∗s(z) T x∗ns(z), we get the same condition presented in (A7) and (A12).
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Observe that when e∗s(z) = e∗ns(z) the non-signatories’first order conditions
remains satisfied, i.e.,

B′(e∗ns(z)) ≡ D′ [z (es − xs) + (n− z) (e∗ns(es, xs)− x∗ns(es, xs))]⇔
B′(e∗ns(z)) ≡ D′(ne∗ns(z)),

C ′(x∗ns(es)) ≡ D′ [z (es − xs) + (n− z) (e∗ns(es, xs)− x∗ns(es, xs))]⇔
C ′(x∗ns(z)) ≡ D′(ne∗ns(z)).

These are identical to the first order condition of the pure non-cooperative
case where countries compete a la Cournot, hence, e∗ns(z) = e∗s(z) = enc.

Note that due to the strict concavity of the benefit function and the strict
convexity of both the damage and the abatement cost functions there exists
a unique set (enc, xnc) and, thus, a unique zmin = n(1−ψ)−φ

(1−ψ)−φ . Reverting the
coalition size back to integers yields:

e∗s(s) T e∗ns(s)⇔ s S zmin ,

x∗s(z) S x∗ns(z)⇔ s S zmin .

[Parts 3-4] Since ws(e∗s(z)) ≡ B (e∗s(z)) − D (NE∗(z)) − C (x∗s(z)) we
have

dws(z)

dz
= B′(e∗s(z))

de∗s(z)

dz
−D′(E∗(z))

∂NE∗(z)

∂z
−C ′ (x∗s(z))

dx∗s(z)

dz
(A13)

where, ∂NE
∗(z)

∂z
= e∗s(z)−x∗s(z)−(e∗ns(es)− x∗ns(z))+

(
de∗s(z)
dz
− dx∗s(z)

dz

)
z+(n−

z)
(
de∗ns(z)
dz
− dx∗ns(z)

dz

)
. Denoting by∆NE∗ = e∗s(z)−e∗ns(es)−(x∗s(z)− x∗ns(z)),

(A13) can be rewritten as follows:

dws(z)

dz
=

de∗s(z)

dz
[B′(e∗s(z))− zD′(NE∗(z))]

−dx
∗
s(z)

dz
[C ′(e∗s(z)) + zD′(NE∗(z))]−D′(E∗(z))∆NE∗

−D′(E∗(z))(n− z)

[
de∗ns(z)

dz
− dx∗ns(z)

dz

]
. (A14)
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From signatories’first order conditions, we know that in equilibrium,

B′(e∗s(z))− zD′(E∗(z))

≡ D′(E∗(z))(n− z)

[
∂e∗ns(es)

∂es

∣∣∣∣
es=e∗s(z)

− ∂x∗ns(es)

∂es

∣∣∣∣
es=e∗s(z)

]
,

C ′(e∗s(z)) + zD′(NE∗(z))

≡ D′(E∗(z))(n− z)

[
∂e∗ns(es)

∂xs

∣∣∣∣
xs=x∗s(z)

− ∂x∗ns(es)

∂xs

∣∣∣∣
xs=x∗s(z)

]
.

Furthermore, (A5) and (A6) yield ∂e∗ns(es)
∂es

∣∣∣
es=e∗s(z)

− ∂x∗ns(es)
∂es

∣∣∣
es=e∗s(z)

= −z(1−ψ)
(n−z)(1−ψ)−φ

while (A8) and (A9) yield ∂e∗ns(es)
∂xs

∣∣∣
xs=x∗s(z)

− ∂x∗ns(es)
∂xs

∣∣∣
xs=x∗s(z)

= z(1−ψ)
(n−z)(1−ψ)−φ .

Therefore, the first two terms in (A14) can be written as,

de∗s(z)

dz
[B′(e∗s(z))− zD′(NE∗(z))]

−dx
∗
s(z)

dz
[C ′(e∗s(z)) + zD′(NE∗(z))]

= D′(E∗(z))(n− z)
z (1− ψ)

(n− z) (1− ψ)− φ

(
de∗s(z)

dz
− dx∗s(z)

dz

)
. (A15)

Differentiating nonsignatories’first order conditions at the equilibrium,
B′(e∗ns(z)) ≡ D′[z(e∗s(z)− e∗s(z) + (n− z)e∗ns(z) and C ′(x∗ns(z)) ≡ D′(ze∗s(z) +

(n− z)e∗ns(z)),with respect to z yields,

de∗ns(z)

dz
=

∆NE∗ + z
(
de∗s(z)
dz
− dx∗s(z)

dz

)
− (n− z) dx∗ns(z)

dz

φ− (n− z)
,

dx∗ns(z)

dz
=

∆NE∗ + z
(
de∗s(z)
dz
− dx∗s(z)

dz

)
+ (n− z) de∗ns(z)

dz

φ
ψ

+ (n− z)
.

From the above we calculate the difference de∗ns(z)
dz
− dx∗ns(z)

dz
and thus, the last
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terms in (A14) can be written as,

D′(E∗(z))(n− z)

[
de∗ns(z)

dz
− dx∗ns(z)

dz

]

= D′(E∗(z))(n− z)
(ψ − 1)

[
∆NE∗ + z

(
de∗s(z)
dz
− dx∗s(z)

dz

)]
(n− z) (1− ψ)− φ (A16)

Substituting (A15) and (A16) into (A14) yields,

dws(z)

dz
=

φ∆NE∗

(n− z) (1− ψ)− φ .

We know that φ
(n−z)(1−ψ)−φ < 0 for all z, and thus, the sign of dωs(z)

dz

depends solely on ∆NE∗. From (A7) and (A12) we know that ∆NE∗ = 0

at zmin. Therefore, given the uniqueness of zmin, we can conclude that ωs(s)
is U-shaped and hence dωs(z)

dz

∣∣∣
zSzmin

S 0. The conversion to integer values of

coalition size is trivial.
[Part 5] Recall that ws(z) = B(e∗s(z)) − D(NE∗(z)) − C (x∗s(z)) and

wns(s) = B(e∗ns(z)) − D(NE∗(z)) − C (x∗ns(z)). Thus, ws(z) T wns(z) ⇔
B(e∗s(z))− C (x∗s(z)) T B(e∗ns(z))− C (x∗ns(z)) and since B′ > 0 and C ′ > 0

we have B(e∗s(z))−C (x∗s(z)) T B(e∗ns(z))−C (x∗ns(z))⇔ e∗s(z) T e∗ns(z) and

x∗s(z) S x∗ns(z)⇔ s S zmin.

8 Appendix II: Proof of Proposition 2

Direct comparison of zmin = n(1−ψ)−φ
1−φ−ψ to zmin

x=0 = n−φ
1−φ yields that z

min >

zmin
x=o ⇔ n > 1. In order to make the analysis is terms of C ′′ we ex-
press zmin in terms of the second derivatives and not the ratios φ and ψ,
that is, zmin = nD′′(NEnc)C′′(xnc)−B′′(enc)C′′(xnc)

D′′(NEnc)C′′(xnc)−B′′(enc)C′′(xnc) . The difference z
min > zmin

x=o

is decreasing in C ′′(xnc), because zmin is decreasing in C ′′(xnc), ∂zmin

∂C′′(xnc)
=

− (n−1)D′′(NEnc)[B′′(enc)]
2

[D′′(NEnc)(C′′(xnc)−B′′(enc))−B′′(enc)C′′(xnc)]2
< 0, since n > 1 and D′′(NEnc) >

0.
(i) Using the specification of zmin, we have that lim

C′′→0
zmin → −nD′′(NEnc)B′′(enc)

−D′′(NEnc)B′′(enc) =

n.
(ii) Using the specification of zmin, for moderate values ofB′′(enc), lim

C′′→∞
(C ′′(xnc)−

B′′(enc))→ C ′′(xnc). Therefore, we have that lim
C′′→∞

zmin → nD′′(NEnc)C′′(xnc)−B′′(enc)C′′(xnc)
D′′(NEnc)C′′(xnc)−B′′(enc)C′′(xnc) =
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nD′′(NEnc)−B′′(enc)
D′′(NEnc)−B′′(enc) = zmin

x=0.

9 Appendix III: Proof of Lemma 1

From (11) we have that es > 0 ⇔ Ω2 + δs2 > (n − s)sγδ2 =⇒ δ2 + δs2 +

2δ(n − s) + (n − s)
[(

1 + γ2δ2 + 2γδ
)

(n− s)− γδ2(s− 2)
]
> 0. We derive

the size of the coalition that minimizes this expression A(s) = δ2 + δs2 +

2δ(n − s) + (n − s)
[(

1 + γ2δ2 + 2γδ
)

(n− s)− γδ2(s− 2)
]
, which is s =

2δ(1+γδ)+n(2+γδ(4+δ+2γδ))
2(1+γδ)(1+δ+γδ)

. Substituting the value s into the A(s), we get A(s) =

a(4δ2(1+γδ)+4nδ(1+γδ)(2+γδ)+n2(4+γδ(8+γ(4−δ)δ)))
4δ2(1+γδ)+8nδ(1+γδ)2+n2(4+γδ(12+γδ(12+δ+4γδ)))

. Then A(s) > 0, if 4δ2(1 + γδ) +

4nδ(1+γδ)(2+γδ)+n2(4+γδ(8+γ(4−δ)δ)) > 0, which is definitely true for
δ < 4. Clearly this is a suffi cient but not necessary condition. Notice that if
we divide the last expression with δ3 and let δ →∞, the expression reduces
to the condition presented in Proposition 1, in Diamantoudi and Sartzetakis
(2006). That is, if abatement is not available (extremely expensive) then the
only option is to decrease the economic activity and thus emissions, which
restricts the size of the coalition to maximum four countries as shown in
Diamantoudi and Sartzetakis (2006). However, as the cost of abatement
decreases substantially, a large part of the necessary emission reduction is
achieved through abatement which eases the restriction on γ. That is, we can
have a situation with substantial damages relative to benefits from emissions
so that countries want to take strong action and in the same time we have
available abatement technologies that can achieve the necessary emission
reductions at a reasonable cost.
From (14) we have that ens > 0 ⇐⇒ (Ω− nγδ) Ω + s2δ(1 + γδ) > 0.

Dividing the expression by δ2 and denoting by τ = 1
δ
, yields, (n − s)2(φ +

γ)2 + [s2 − (n− s)(γn− 2)] (φ + γ) − (γn − 1) > 0. If abatement is not
available, that is δ →∞, which implies τ → 0, the expression reduces to the
condition presented in Proposition 1, in Diamantoudi and Sartzetakis (2006).
However, as the cost of abatement decreases emission of nonsignatories are
positive for higher values of γ. Although the necessary condition can be
derived using the above technique, it is very complicated and we omit it. It
is important to notice that the condition constraints both the values of γ and
δ.
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