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Abstract 

In a competitive industry where production entails a negative externality, a welfare-

maximizing regulator considers, as control instruments, setting a cap on the industry 

output or levying an output tax. We embed this scenario within a dynamic setup where 

market demand is stochastic and market entry is irreversible. We firstly determine the 

industry equilibrium under each policy and then determine the cap level and the tax rate 

which maximize welfare in each case. We show that a first-best outcome can be 

achieved through the tax policy while the cap policy may only qualify as a second-best 
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1. Introduction 

This paper explores the regulation of market entries when the production of 

commodities exerts external costs. This may be the case when, for instance, the entry 

of foreign firms negatively affects the domestic industry (Koenig, 1985), further market 

entries increase pollution (Spulber, 1985) or the development of new properties harm 

residents by reducing open space (Anderson, 1993). 

 Regulation may affect industry structure and equilibrium. In this respect, a 

relevant strand of literature, investigating the impact of environmental policy, has 

shown, mostly using static models, that the internalization of the external cost generated 

by production depends on the degree of market competition. This is because the 

regulator must take into account the welfare losses that under imperfect competition 

may be due to distortions of the industry output and suboptimal market entries (see e.g. 

Spulber, 1985; Katsoulacos and Xepapadeas, 1995, 1996; Shaffer, 1995; Requate, 

1997; Lee, 1999; Lahiri and Ono, 2007; Fujiwara, 2009; Lambertini et al., 2017; and 

the survey by Millimet et al., 2009). Another strand of literature has instead focused on 

the regulation of negative externalities in the framework of irreversible investment 

under uncertainty.1 Baldursson and von der Fehr (1999) study the efficacy of price and 

quantity controls in a setup where the investment in abatement is irreversible for some 

firms in the industry and reversible for others. The uncertainty in their analysis springs 

from the number of the firms using reversible abatement technology which is assumed 

to be stochastic. Their main finding is that the relative slope of the cost curve with 

respect to the slope of the benefit curve determines whether tax or cap is the better 

                                                 
1Chao and Wilson (1993) show that the option value affects the investment in abatement under uncertain 
permit prices. Xepapadeas (1999) studies how a firm respond to environmental policy when deciding 
their investment in abatement and location under uncertainty about the output price, the policy context 
and the technology. Zhao (2003) shows that when considering uncertainty about the abatement costs the 
magnitude of the option value is larger when introducing taxes rather than permits. 
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policy. Jou and Lee (2008) consider a real estate market assuming that newly developed 

properties, by reducing open space, have an external cost. They find that the 

internalization of such cost requires setting a positive tax on development or a negative 

tax on land values. In a similar framework, Lee and Jou (2007) show how the regulator 

can correct the negative externality by imposing a density ceiling control. Di Corato 

and Maoz (2019) search for the optimal cap on private firms’ entries in markets where 

production has adverse externalities and the output price is stochastic.2 As the literature 

on investment under uncertainty shows, in such a case the price which triggers market 

entries is above the marginal private cost as it also includes an “uncertainty premium” 

(see Dixit and Pindyck, 1994). They show that the higher the price uncertainty the 

higher are this uncertainty premium and the price threshold triggering market entries, 

implying that a greater part of the externality (possibly all of it) is taken care of by the 

endogenous actions of firms, reducing thus the impact on welfare of the external 

damage.  

In this paper, we set up a model analyzing the industry equilibrium under perfect 

competition in a dynamic setup where market demand is stochastic and entry is 

irreversible. Production generates an external cost for Society which is assumed 

increasing and convex in the industry output. We then consider the following two polar 

policy instruments for regulating the negative externality: (i) a quantity control exerted 

by introducing a cap on the industry output and then rationing market entries; (ii) a 

price control exerted by imposing an output tax. We characterize the industry 

equilibrium under each policy and try to find which of the two policy tools leads to 

greater welfare. 

                                                 
2The model builds on Bartolini (1995) where, differently, no external damages associated with firms’ 
investment and production are explicitly considered and the cap is taken as exogenous. 
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Our main findings are as follows. In the case of a cap policy we find that 

optimality leads to on an internal welfare-maximizing cap level. Rather intuitively, this 

level is the quantity at which the marginal market surplus is equal to the marginal social 

cost, i.e., the sum of private and external costs. If the current market quantity is still 

below this level, then it is optimal to set this level as a cap on market quantity and allow 

the market to expands towards it over time, based on the strategic entry considerations 

of the firms. If, on the other hand, the current market quantity is already above this 

welfare-maximizing cap level, then, due to irreversibility, the market cannot revert to 

this welfare-maximizing cap level, and it is optimal to set the cap at the current level, 

i.e., to immediately ban any further entry. We also find that the welfare-maximizing 

cap level is increasing in the level of market uncertainty, which implies that greater 

profit uncertainty makes the policy maker allow more entries. This result is based on 

the same effect by which the uncertainty premium counterbalances the external cost in 

Di Corato and Maoz (2019). 

The result that the optimal policy in this case is based on an internal welfare-

maximizing cap level is novel because the only other study searching for an optimal 

cap within a competitive environment with profit uncertainty and investment 

irreversibility is Di Corato and Maoz (2019) which reaches a different result. 

Specifically, they assume that the external cost is a linear function of the quantity 

produced, and therefore reach the result that it optimal to either have no cap at all, if 

the uncertainty is high enough, and otherwise to set the cap at the current market 

quantity. In contrast, in this study we assume that the external cost is a convex function 

of market quantity, as the empirical literature about pollution damages often suggests, 

and therefore reach the result of an internal welfare-maximizing cap level.  
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In the case of a tax policy we show that the output tax can be viewed as an 

additional cost of production for the private firm and its impact can be studied using 

the model by Leahy (1993). In his model, the price threshold triggering market entries 

is increasing in the cost of production, therefore, the introduction of an output tax, by 

raising the entry threshold, delays market entries with respect to the scenario where the 

industry is not regulated. This is because the output price, in its random evolution, needs 

more time (in expected terms) before hitting eventually a higher threshold. We then 

determine the tax rate maximizing welfare and find that it must be set equal to the 

marginal external cost associated with the industry output supplied at each time period. 

This implies that further market entries become less and less likely as the industry 

output increases since the higher the tax burden, the higher the entry threshold. 

Finally, when comparing the cap and the tax policies, a relevant trade-off 

emerges. With the cap, the industry output is bounded but the cap does not affect its 

temporal evolution with respect to the scenario where the industry is not regulated. In 

contrast, with the output tax, there is no limit to market entries but the tax affects the 

temporal evolution of the industry output by delaying market entries.  

We then show that a first-best outcome can be achieved only by adopting a tax 

policy and that, in this respect, the ability to affect the entry timing is crucial. In fact, 

by setting the tax rate equal to the marginal external cost associated to the industry 

output supplied at each time point, the externality is fully internalized by the firms and 

consequently entries occur only when the exogenous stochastic shifts in market demand 

yield an associated gain in terms of market surplus covering the marginal social cost of 

an additional unit of the good. In contrast, a cap policy may only be considered as a 

second-best alternative since, in the presence of a cap, market entries occur at a socially 

suboptimal time. In fact, when the cap is not binding, firms keep entering the market 
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using the same strategy that would be followed in the absence of regulation while, when 

the cap is binding, market entries do not occur at all, even when they would be 

beneficial from a welfare perspective.  

The paper remainder is as follows. In Section 2, we present our model set-up. 

In Section 3, we determine the industry equilibrium under no policy intervention. In 

Section 4, we introduce the two policy instruments for externality control and determine 

the optimal entry strategy under each policy. We determine the optimal cap and the 

optimal tax rate, compare the two polices and discuss our findings. In Section 5, we 

provide some remarks on our results and conclude. 

 

2. The basic model 

Within a continuous time setting, we consider a competitive industry comprised of a 

large number of identical firms that producing a certain good. Their individual size, dn, 

is infinitesimally small with respect to the market and they are all price takers.3 

At each time point 0≥t , the demand for this good is given by: 

 

(1)  ( )ttt QXP φ⋅= , 

 

where Pt and Qt are the market price and quantity of the good, respectively, ( )tQφ  is a 

deterministic component of the market demand with ( ) 0>tQφ  and ( ) 0' <tQφ  for any 

0>tQ , and ( ) 0lim =
∞→ tQ

Q
t

φ . The term Xt, is a demand shift factor that evolves stochastically 

over time according to the following Geometric Brownian Motion: 

                                                 
3 Assuming that firms are of infinitesimally small size is standard in models investigating the competitive 
equilibrium in a dynamic setting. See for instance Jovanovic (1982), Hopenhayn (1992), Lambson 
(1992), Leahy (1993), Dixit and Pindyck (1994, Ch. 8), Bartolini (1993, 1995) and Moretto (2008). 
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(2)  tttt dZXdtXdX ⋅⋅+⋅⋅= σµ , 

 

where µ is the drift parameter, σ is the instantaneous volatility, and dZt is the increment 

of a standard Wiener process satisfying ( ) ( ) dtdZEdZE tt == 2,0  at each t. 

Each firm rationally forecasts the future evolution of the whole market. Market 

entry is free and an idle firm can enter the market at any time. By entering the market, 

the firm commits to permanently offer one unit of the good at each t. This implies that 

the industry output, Qt, equals the number of active firms in the industry. Producing 

one unit of the good has a cost equal to M > 0. 

Production entails a negative externality that firms do not incur. Its cost for 

Society, D(Qt), is a function of the industry output Qt. We take the standard assumptions 

that ( ) 0' >tQD  and ( ) 0'' >tQD   for any 0>tQ  and ( ) 00 =D , implying that the external 

cost is positive, increasing and convex in the industry output. 

Last, firms are risk-neutral profit maximizers and discount future payoffs using 

the interest rate r.4 As standard in the literature, we assume that r > µ to secure that the 

firm's value is finite. 

 

3. Industry equilibrium under no policy intervention 

Let start by considering a scenario where no control policies are present. Under our 

model setup, a firm contemplating market entry is facing the same situation as the 

                                                 
4 Note that introducing risk aversion would not affect our results, but merely require the development of 
the analysis under a risk-neutral probability measure. See Cox and Ross (1976) for further details. 
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investors in Leahy (1993). Therefore, in the following, we use Leahy's analysis in order 

to determine the optimal entry strategy.5 

At each time t, an idle firm has to decide whether to enter the market or not. By 

assumption, a firm entering the market commits to permanently produce one unit of the 

good at a cost equal to M. The present value of the associated flow of production costs, 

i.e. rM / , can be viewed as the irreversible investment that a firm must undertake in 

order to enter the market. As future revenues are uncertain, market entry will occur 

when the expected profitability of such investment is sufficiently high. 

Let ( ),V X Q be the value of an active firm given the current levels of X and Q. 

The standard no-arbitrage analysis in Appendix A shows that 

 

(3)  ( ) ( ) ( )
r

M
r

QXPXQYQXV −
−

+⋅=
µ

β ,, , 

 

where 1>β  is the positive root of the quadratic equation 

 

(3.1)  ( ) 02
2
122

2
1 =−⋅⋅−+⋅⋅ rxx σµσ . 

 

In (3),  the term  ( )
r

M
r

QXP −−µ
,  represents the expected present value of the flow 

of the firm's future profits conditional on Q remaining forever at its current level. 

Therefore, the first term, ( ) βXQY ⋅ , accounts for how future market entries reduce the 

value of the firm, as the firm’s profit falls when the industry output Q increases.  

                                                 
5 In the following, we will drop the time subscript for notational convenience. 
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Two boundary conditions are required for finding the threshold function ( )QX *

triggering market entry. The first one is the Value Matching Condition: 

 

(4)  ( )* , 0V X Q Q  =  , 

 

and the second one is the Smooth Pasting Condition: 

 

(5)  ( )* , 0XV X Q Q  =  . 

 

Condition (4) is a standard zero-profit condition at the entry requiring that the 

value of an idle firm, which is null under free entry6, must equal the value of an active 

one. Condition (5), in contrast, is an optimality condition that concerns the evolution of 

the demand shift, Xt, over time. Each time the process { }, 0tX t ≥  hits the threshold 

( )*X Q  a new firm enters the market and the price of the good, P(Q), lowers since the 

supplied market quantity output has increased (see Dixit and Pindyck, 1994, Ch. 8, pp. 

252-260). Thus, X *(Q) is an upper reflecting barrier regulating the process { }0, ≥tX t  by 

keeping its level over time below X *(Q). 

Solving the system [4-5] yields the following result: 

 

Proposition 1: Entry in a perfectly competitive market occurs every time the process

{ }, 0tX t ≥  hits the threshold: 

 

                                                 
6 The option to wait is valueless under free-entry since, as entry is attractive also for other firms, the firm, 
by postponing its entry, may lose out an investment opportunity (see Dixit and Pindyck, 1994, Ch. 8, pp. 
256-258). 
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(6)  ( ) ( )
( )Q

rQX r
M

φ
µβ ⋅−⋅

=
ˆ

* , 

 

where 11ˆ
1

1 >+≡ −ββ . 

Proof:  Follows from applying (3) in (4) and (5).          � 

 

From ( ) 0' <tQφ  it follows that the threshold X *(Q) is an increasing function of 

Q, implying that the larger the market quantity supplied, the stronger the competition 

and then, ceteris paribus, the higher the profitability required for entering the market. 

Figure 1 schematically shows the entry dynamics based on the threshold ( )*X Q .     

 

 
Figure 1: Demand swings and entry dynamics in a competitive industry. When the 
market is at a point like A, below the entry threshold, the swings in the demand shit 
factor, X, do not change market quantity. When X hits the threshold function ( )*X Q , 
firm entry leads to an incremental increase in Q making X once again below the 
threshold line.  
 

In time intervals where Q is not changed, the changes in X are translated, via 

(1), to changes in P. Based on standard properties of Brownian Motions, in such time 
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intervals the proportional connection between X and P, as captured by (1), implies that 

P is also a Geometric Brownian Motion, and with the same parameters as X. On the 

other hand, at time instants when X hits the threshold function X *(Q), then a rise in X 

is not translated into a rise in P but leads to an increase in Q which keeps P unchanged. 

This occurs at the following level of P: 

 

 (7)  ( ) ( ) ( )* * ˆ MP X Q Q r
r

φ β µ= ⋅ = ⋅ − ⋅ , 

 

Which makes *P  an upper reflecting barrier regulating the process { }0, ≥tPt  and 

preventing  the price from going above the level *P .  Figure 2 provides an illustration 

of these dynamics. 

 

 

Figure 2: Price dynamics in a competitive industry 

 

Note that, by the Marshallian rule, a firm should enter the market as long as 

( ) ( ) r
MrQXP ⋅−≥⋅= µφ . Hence, by (6), the term 01

1 >−β  in β̂  is the wedge by which the 
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entry threshold should be adjusted in order to take the uncertainty and irreversibility 

into account (see Dixit and Pindyck, 1994, Ch. 5, Section 2). Last, note that *

2 0dP
dσ

>  

which follows from (7) taken together with the definition of β̂ and also with 0/ <σβ dd  

which is established in appendix A. This means that the higher the demand volatility, 

the higher the price threshold triggering firm’s entry, which implies that market entry 

is delayed. This is because the output price, in its random evolution, needs more time 

(in expected terms) before hitting eventually a higher threshold. 

 

4. Industry equilibrium under policy intervention 

The optimal entry strategy based on Eq. (6) does not account for the external cost 

associated with the negative externality that production entails once the firm has entered 

the market. In this section, we consider two policies for the reduction of the external 

cost: i) a cap on the industry output and ii) a tax on each unit of output. We first 

determine the industry equilibrium under each policy and then the level of the cap and 

the tax rate, respectively, maximizing welfare. 

 

4.1 Industry equilibrium and welfare under a cap on the industry output 

Assume that the regulator sets a cap on the aggregate industry output. Further, 

assume that entry licenses are distributed when the cap is announced. Each license 

allows producing one unit of output and their number is equal to difference between the 

cap, Q , and the current level of the aggregate industry output, Q. We abstract from 

how the licenses are distributed since for our purposes their distribution has no other 

implications than providing to each firm owning a license the right to enter the market.7 

                                                 
7 Note that, as shown by Bartolini (1995), the government may fully extract the producer’s surplus by 
allocating licenses through a competitive auction.  
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4.1.1 The optimal entry strategy 

The analysis of the firm's optimal entry under rationing is technically similar to the 

analysis in Section 3. The relevant difference between the two cases is that in this case 

the option to enter is an asset having a positive value that the firm gives up by entering 

the market. Thus, alongside the function ( ),V X Q  which represents the value of an 

active firm, we define the function ( ),F X Q  which stands for the value of the option to 

enter the market. A standard no-arbitrage analysis, similar to the one conducted in 

Appendix A for determining the value of an active firm, yields: 

 

(8)  ( ) ( ),F X Q H Q X β= ⋅ , 

 

(9)  ( ) ( ) ( ),
,

P X Q MV X Q Y Q X
r r

β

µ
= ⋅ + −

−
, 

 

where ( )H Q  is to be found alongside the threshold ( )*X Q  by imposing the following  

Value Matching Condition: 

 

(10)  ( ) ( )* *, ,V X Q Q F X Q Q   =   
, 

 

and Smooth Pasting condition: 

 

(11)  ( ) ( )* *, ,X XV X Q Q F X Q Q   =    . 
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Condition (10) asserts that the value of the option to enter, that is, the implicit 

cost of market entry, equals the value of an active firm, that is, the implicit return 

associated with market entry. Condition (11) secures optimality by imposing that the 

marginal cost of market entry equals its marginal return. As shown by Dixit (1993), 

Condition (10) holds for any entry threshold and merely reflects a no arbitrage 

assumption, while Condition (11) is an optimality condition which holds only at the 

optimal threshold. 

 

Proposition 2: In a perfectly competitive market with cap on the aggregate industry 

output, as long as the quantity in the market, Q, is below the cap, new entries to the 

market occur every time the process{ }0, ≥tXt  hits the threshold: 

 

(12)  ( ) ( )
( )Q

rQX r
M

φ
µβ ⋅−⋅

=
ˆ

* ,  

 

or, equivalently, when the process { }0, ≥tPt  hits the barrier *P , as captured by (7). 

 

Proof: Follows from applying (8) and (9) in (10) and (11).        � 

 

Notably, the threshold function (12) does not depend on Q  and is equal to the 

threshold function (6) determined under no policy intervention. The relevant difference 

here is that X *(Q) applies only until the cap Q  is reached.  

By Proposition 2 and (7), a new firm enters the market every time the process 

{ }0, ≥tPt  hits the upper reflecting barrier *P . As explained above, this prevents the price 

from going above the level *P . However, under a cap policy, the regulation of the price 
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through the barrier control  applies only until the cap Q  is reached and, once there, the 

output price starts moving freely over time following only the evolution dictated by (2). 

Figure 3 provides an illustration of these dynamics. 

 

 

Figure 3: Price dynamics under a cap on the industry output 

 

4.1.2 Welfare and the optimal cap 

Once determined the industry equilibrium, in this section we determine the cap level 

maximizing welfare. This optimal level will trade off the welfare gains associated with 

lower negative externalities and the losses, in terms of market surplus, due to a lower 

quantity of the good available on the market once the cap has been reached. 

Following a procedure similar to the one conducted in Appendix A for 

determining the value of an active firm, the expected discounted social welfare, given 

the current levels of X, and Q and the cap set at Q , is: 
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(13)  ( ) ( ) ( ) ( )
0

, '
, , ,

Q P X q M D q
W X Q Q C Q Q X dq

r r
β

µ
 +

= ⋅ + − ⋅∫  − 
,  

 

The integral in (13) represents the expected present value of welfare if the 

current industry output level, Q, will never change. For each unit supplied, the term  

( ),P X q
r µ−  is the expected present value of the flow of market surplus associated with the 

supply of each unit of the good  whereas the term ( )'M D q
r

+  is the present value of the 

flow of social costs associated to its production, i.e. private production costs plus 

external costs. The first term, ( ),C Q Q X β⋅ , captures instead the contribution of future 

market entries to welfare.  

At X *(Q) the following Value Matching Condition must hold: 

 

(14)  ( )[ ] 0,,* =QQQXWQ . 

 

Condition (14) is a standard boundary condition stating that each market entry 

raises welfare by 
( ) ( )* , 'P X Q Q M D Q

r rµ

  + 
− −  via the supply of an additional unit of the good, 

but at the same time it also lowers welfare by ( ) ( )*,QC Q Q X Q β⋅  in that the forgone 

market entry lowers the value of the contribution to welfare by future market entries.  

Further, at QQ =  we must impose that: 

 

(15)  ( ), 0C Q Q = . 
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The intuition behind Condition (15) is that the term ( ) βXQQC ⋅,  in (12) 

captures the welfare associated with future entries to the market. No such changes are 

possible once Q has reached the cap Q  and thus ( ),C Q Q  must be null at QQ = . 

 Based on (13), (14) and (15) we show in Appendix B that: 

 

(16)  ( ) ( )
( )

*

*

' 1,
Q

Q

M D qPC Q Q dq
r r X q βµ
 +

= − ⋅ ⋅ ∫
−  

. 

 

Differentiating ( ),C Q Q  with respect to Q  yields: 

 

(17)  ( ) ( )
( )

*

*

' 1,Q
M D QPC Q Q

r r X Q
βµ

 +
 = − ⋅

−  
. 

 

Eq. (17) leads to the following Proposition: 

 

Proposition 3:  

(a) If the current industry output level, Q, is sufficiently large so that ( )
r

QDM
r
P '* +
− ≤µ  

then it is optimal to set the cap at the current Q, i.e., to immediately ban any further 

market entry. 

 

(b) otherwise, if the current industry output level, Q, is sufficiently small so that 
( )

r
QDM

r
P '* +
− >µ  then the optimal level of the cap, denoted by *Q , is the root of the 

following equation: 
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(18)  
( )

r
QDM

r
P ** '+

=
− µ

, 

 

Proof: Follows from (17) and the convexity of D(Q).                   � 

 

By Proposition 3, if ( )
r

QDM
r
P '* +
− ≤µ , a ban deterring any further market entry is optimal. 

This is because the expected present value of the flow of market surplus added by the 

firm entering the market, i.e. µ−r
P*

, does not cover the present value of the flow of social 

costs, i.e. ( )
r

QDM '+ , associated with the production of one more unit of the good. 

Otherwise, if ( )
r

QDM
r
P '* +
−

>µ
, it is optimal setting a cap at a level higher than the current 

industry output level Q. Firms will then be allowed to enter the market until the industry 

output level *Q  is reached and where ( )
r

QDM
r
P

** '+
− =µ . 

Implicit differentiation of (18) yields that: 

 

(19)  ( ) ( )
0

1''
1

22*2

*

>⋅
−

⋅−=
σ
β

βσ d
dM

QDd
Qd , 

 

where the inequality follows from ( ) 0'' >QD , β > 1 and 02 <σ
β

d
d . Thus, the higher the 

demand uncertainty the larger the optimal cap and the larger the industry output that 

the regulator is going to allow for. The reason for that is that a higher 2σ  leads, via its 

effect on the option wedge β̂ , to a higher *P  and, consequently, to a slower entry 

process in expected terms. This implies that while, on the one hand, the external cost 

increases at a slower speed, on the other hand, we incur into losses of market surplus 
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since, having a higher entry barrier, *P , market prices may reach relatively higher 

levels before a new firm enters the market. Further, one must account for the fact that, 

even tough, once reached the cap, the external cost stops increasing, there is a loss of 

market surplus due to the fact that, as no firms may enter the market, the output price 

evolves freely being absent the barrier control preventing it from going above the level 

*P . The loss of market surplus may be relevant and consistently, 

    

(20)  ∞=
∞→

*
2
lim Q
σ

, 

 

which means that setting an internal cap, *Q , is not optimal since restricting firms’ 

entry is too costly in the presence of high levels of market uncertainty. 

Implicit differentiation of (18), also yields: 

 

(21)  ( ) 0
1

1
''
1

*

*

>
−

⋅=
βQDdM

Qd
, 

 

where the inequality follows from ( ) 0'' >QD  and β > 1. Thus, the higher the production 

cost the larger the optimal cap and therefore the larger the market size that the regulator 

is going to allow for. The reason for that is that the larger M, the higher the price that 

triggers entry, i.e. *P , and, consequently, the slowest the entry process in expected 

terms. This has, as above, implications for the speed at which the external cost increases 

and the magnitude of the flow of market surplus.  

Last, based on Proposition 3 and (13), in the case where the optimal cap is at 

the current Q, the expected discounted social welfare is equal to: 
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(22)  ( ) ( ) ( ) dq
r

qDM
r

qXPQXW
Q

cap ⋅






 +
−

−
= ∫

0

',,
µ

, 

 

otherwise, when the optimal cap is  *Q , the expected discounted social welfare is: 

 

(23)    ( ) ( )
( )

* *

*
'

,
Q

cap

Q

M D qP XW X Q dq
r r X q

β

µ

  +
= − ⋅ ⋅  ∫

−      
+ 

 

      
( ) ( )

0

, 'Q P X q M D q
dq

r rµ
 +

+ − ⋅∫  − 
 

 

As Dixit and Pindyck (1994, pp. 315-316) show, the term 
( )*

X
X q

β
 
  

 is equal to the 

discount factor ( )r T qE e− ⋅ 
  

, where T(q) is the time when process {Xt, t > 0}, starting 

from its current level X, hits the threshold level ( )*X q  for the first time. This insight 

enables the following, rather intuitive, view of the resulting formula for the welfare 

function, as captured by (23): 

 

• The last term, ( ) ( ), '

0

Q P X q M D q
r r dqµ

+
−

 − ⋅∫   
, is the integral, over the already 

supplied Q units of the good, of the expected present value of the flow of social 

welfare associated with each of those units, i.e. the flow of market surplus,

( ),P X q
r µ− , minus the flow of social costs, ( )'M D q

r
+ . 
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• The first term, therefore, represents is the expected present value of the flow of 

social welfare associated with future entries, those that will add units from the 

current quantity, Q, to the maximum allowed by the cap, that is, *Q . The value 

of each future entry comprises two parts: 

 

o ( )* 'M D qP
r rµ

+
− − , which is the expected present value of the flow of social 

welfare that the added unit of the good would yield, from the moment in 

which the firm producing it enters the industry, i.e. when the market 

price is equal to P*. 

o 
( )*

X
X q

β
 
  

, the factor by which the payoff ( )* 'M D qP
r rµ

+
− − is discounted 

back to current time.  

 

4.2 Industry equilibrium and welfare under an output tax 

Assume that the regulator levies a tax 0>τ  per unit of output.  

 

4.2.1 Optimal entry strategy 

The analysis of the industry equilibrium under an output tax is technically identical to 

the one conducted in Section 3. The only difference is that here the cost for producing 

one unit of output is equal to M +τ. Hence: 

 

Proposition 4: Entry in a perfectly competitive market under an output tax occurs every 

time the process{ }0, ≥tX t  hits the threshold: 
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(24)  ( )
( )

( ) ( )** *
ˆ Mr

rX Q X Q
Q

τβ µ

φ

+
⋅ − ⋅

= > , 

 

or, equivalently, the process { }, 0tP t ≥  hits the barrier: 

 

(25)  *** )(ˆ P
r

MrP >
+

⋅−⋅=
τµβ  

 

Proof: Follows from repeating the proof of Proposition 1, this time with a private 

production cost equal to M + τ.                                                                                       � 

 

 

 

Figure 4: Price dynamics under an output tax 

 

4.2.2 Welfare and the optimal tax rate 

The expected discounted social welfare, given the current levels of X and Q, is: 
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(26)  ( ) ( ) ( ) ( )
∫ ⋅







 +
−

−
+⋅=

Q

dq
r

qDM
r

qXPXQCQXW
0

',,,,
µ

ττ β . 

 

The tax payments from the firms to the government lower their profits and raise 

the government revenues by the same amount and therefore cancel out of the social 

welfare. Thus, the only remaining channel by which the output tax affects social welfare 

is via its effect on the firms’ entry thresholds and therefore on entry times. Thus, when 

setting an optimal tax policy, the regulator is in fact setting an optimal threshold policy. 

We find that the optimal tax should be set at a level such that both the following Value 

Matching Condition: 

 

(27)  ( )** , 0QW X Q Q  =  , 

 

and Smooth Pasting Condition: 

 

(28)  ( )** , 0QXW X Q Q  =  , 

 

hold. 

 As above, Condition (27) is a boundary condition stating that at each market 

entry we have an increase in welfare associated with the supply of an additional unit of 

the good, i.e. 
( ) ( )** , 'P X Q Q M D Q

r rµ

  + 
− − , minus the welfare loss associated with the just 

foregone market entry, i.e. ( ) ( )**,QC Q X Q βτ ⋅ . Condition (28), on the other hand, is 
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an optimality condition that leads to the entry pattern which is optimal from the 

regulator’s perspective and to the tax rate that induces it. 

Applying (26) in (27) and (28) leads to the following proposition: 

 

Proposition 5: The welfare maximizing tax rate is: 

 

(29)  ( ) ( )'Q D Qτ = , 

 

Substituting (29) in (24) yields that the optimal entry threshold is: 

 

(30)  ( )
( ) ( )

( )
**

'ˆ M D Q
r

rX Q
Q

β µ

φ

+
⋅ − ⋅

= , 

 

Notably, by rearranging (30), one may easily show that for any given Q 

 

(31)  
r

QDM
r

QDM
r
P )(')('ˆ

** +
>

+
⋅=

−
β

µ
. 

 

By (31), in the equilibrium of the considered industry, market entries are always 

beneficial since the expected present value of the flow of market surplus added by a 

new firm entering the market, i.e. µ−r
P **

, covers always the present value of the flow of 

social costs, i.e. ( )
r

QDM '+ , associated with the production of one more unit of the good. 

This is because at each entry the barrier level **P  is adjusted upward by taxing at a tax 

rate *τ  which is increasing in Q. Therefore, market entries occur always at a price 
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which is sufficiently high to secure, once accounted for the added external cost, a 

positive contribution to welfare. Figure 5 provides an illustration of these dynamics.  

 

Figure 5:: Price dynamics under optimal output taxation  

 

Conditions (27) and (28) also yield: 

 

(32)  ( ) ( )

( )
**

*

** *

' 1,
,

Q
M D QPC Q

r r X Q
βτ

µ τ

 +
= − − ⋅ 

−  
 

 

To integrate (32) we use the following boundary condition: 

 

(33)  ( ) 0,lim =
∞→

τQC
Q

. 

 

The intuition behind Condition (33) is immediate. In (26), the term ( ) βτ XQC ⋅,  

captures the welfare associated with future increases of the industry output. No such 
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changes are expected when Q → ∞  because in that case the entry threshold (24) goes 

to infinity by the assumption ( ) 0lim =
∞→

Q
Q

φ . 

 Integrating (32) and applying (33) yields: 

 

 (34)  ( ) ( )

( )
**

*

** *

' 1,
,Q

M D qPC Q dq
r r X q

βτ
µ τ

∞  +
= − ⋅ ⋅ ∫

−  
.  

  

Applying (34) and (1) in (26) yields that the expected discounted social welfare 

when the tax rate is optimally set is equal to: 

 

(35)  

( ) ( )
( )

( ) ( )

**

** *

0

'
,

,

, '

tax

Q

Q

M D qP XW X Q dq
r r X q

P X q M D q
dq

r r

β

µ τ

µ

∞   +  = − ⋅ ⋅ + ∫  −     

 +
+ − ⋅∫  − 

 

 

As in (23), the second term, ( ) ( ), '

0

Q P X q M D q
r r dqµ

+
−

 − ⋅∫   
, is the expected present value of 

the flow of social welfare associated with the already supplied Q units of the good. The 

first term represents the expected present value of the flow of social welfare associated 

with future entries that will add units from the current quantity, Q, up to infinity. The 

value of each future entry is given by the expected present value of the flow of social 

welfare that each added unit of the good would yield from the moment in which the 



27 
 

firm producing it enters the industry, i.e. 
** '( )M D qP

r rµ
+

− − , discounted back to current 

time through the stochastic discount factor ( )** *,
X

X q

β

τ

 
 
  

. 

 

4.3 Social optimum and industry equilibrium under the two policies 

Let start by characterizing the social optimum in the considered industry. For the social 

planner, the relevant problem concerns whether and when to expand the quantity of the 

good supplied so as to maximize the social welfare (see Dixit and Pindyck, 1994, 

Chapter 9, Section 1.A).   

The expected discounted social welfare, given the current levels of X and Q, is: 

 

(36)  ( ) ( ) ( ) ( )
0

, '
,

Q P X q M D q
W X Q C Q X dq

r r
β

µ
 +

= ⋅ + − ⋅∫  − 
 

 

 Denoting by ( )QX SP  the socially optimal threshold for market entry and 

maximizing (36) subject to: 

 

(37)  ( )[ ] 0, =QQXW SP
Q  (Value Matching Condition), 

(38)  ( )[ ] 0, =QQXW SP
QX  (Smooth Pasting Condition), 

(39)  ( ) 0lim =
∞→

QC
Q

, 

 

yields: 

 



28 
 

(40)  ( )
( ) ( )

( ) ( ) ( )QXQX
Q

r
QDMr

QX SP **** ,

'ˆ
>=

+
⋅−⋅

= τ
φ

µβ
, 

    

By (40), it immediately follows that: 

 

Proposition 6: A first-best outcome can be achieved through the optimal tax policy 

while the optimal cap policy may serve only as a second-best alternative. 

 

The optimal tax policy found in the previous section in a decentralized setting 

leads to the same supply path { }0, ≥tQt  that the social planner would choose in a 

centralized setting. This is because in the decentralized case of a regulator choosing an 

optimal tax policy, the only effect the output tax has on welfare is via the timing of 

market entries. Formally, the correspondence can be easily proven by substituting 

( )QD'* =τ  into Conditions (27) and (28) which would then yield Conditions (37) and 

(38).  

The result above deserves some further comment. For a social planner 

maximizing welfare, a market entry is desirable as far as the associated gain in terms 

of market surplus covers its marginal social cost. In our set-up where firms may enter 

the market at any time point over an infinite time horizon, there is always a time point 

where this condition is met. Therefore, in a decentralized setting, a first-best policy 

should be one able to delay market entries so that they occur at the “right” time from 

the social planner’s perspective. Our analysis shows that this is feasible only via price 

control and, specifically, by equating the tax rate to the marginal external cost 

associated to the industry output supplied at each time point. This allows a complete 

internalization of the external cost by the firm when setting the entry strategy and, 
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consequently, the industry equilibrium secures a first-best outcome. In contrast, 

quantity control exerted through a cap policy may only qualify as a second-best 

alternative. This is because the resulting industry equilibrium is suboptimal for two 

reasons. First, the cap has no impact on the timing of market entries since firms keep 

setting their entry strategy without internalizing the associated external cost and, 

second, there is a loss of potential welfare gains associated with blocked market entries 

once the cap has been reached. 

From Proposition 6, it follows, as a corollary, that  

 

Proposition 7: The welfare achieved through the optimal tax policy, as captured by (35) 

is higher than the welfare achieved through the optimal cap policy, as captured by (23). 

The associated welfare gain is equal to: 

 

(41)   ( ) ( ), ,tax capW X Q W X Q− =  

                          
( )

( )*

**

** *

'

,Q

M D qP X dq
r r X q

β

µ τ

∞   +  − ⋅ ⋅ ∫  −     

 + 

  
( )

( )
* **

** *

'

,

Q

Q

M D qP X
r r X q

β

µ τ

   +  + − ⋅ ∫   −     

 +    

                
( )

( )

*

*
'M D qP X dq

r r X q

β

µ

  + − − ⋅ ⋅   −        

 

 

Proof: See Appendix C.               �       
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Eq. (41) illustrates of the sub-optimality of the cap policy. By Proposition 5, the 

first term in (41) is positive for any *QQ ≤ . This term represents the welfare that is 

created only under a tax policy as it springs from units of the good added after the cap 

level, *Q , is reached.. The second integral refers to units produced until *Q  is reached 

and that, therefore, are produced under both policy types. The expression inside the 

integral shows the welfare trade-off between the two policy tools for units in that range: 

 

• The expected present value of the flow of social welfare is greater under the 

tax policy since  ( ) ( )** *' 'M D q M D qP P
r r r rµ µ

+ +
− −− > − . 

• The expected pace at which these units are added is faster under a cap policy, 

and therefore under the cap policy the surplus of each unit is expected to be 

less heavily discounted, as 
( ) ( )** **,
X X

X q X q

β β

τ
   <      

. 

 

As shown in Appendix C, the expression inside the second integral is positive 

as well, implying that for these units the surplus effect dominates the discounting effect.  

 

5. Conclusions 

In this paper, we have presented a model of endogenous market structure under 

uncertainty, with production externalities regulated by a cap on the industry output or 

via an output tax. The main result is that the tax policy dominates the cap policy when 

aiming at the maximization of the welfare. In particular, we show that the tax policy 

allows achieving a first-best outcome since the external cost associated with production 

is fully internalized. 
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 In the case of a cap policy we have assumed that entry licenses are distributed 

when the cap is announced. As Bartolini (1995) shows, in the presence of entry licenses, 

firms holding a license may optimally exercise their option to invest since the threat of 

being preempted by others is absent.  This creates a dynamic entry pattern in which 

until the cap is reached firms gradually enter the market at time points in which the 

entry threshold, based on a sufficiently large profitability, is reached. Otherwise, as 

Bartolini (1993, 1995) shows, if firms are not licensed, this gradual process last only 

until a certain quantity is reached, and then a competitive run leading the market 

quantity instantly to the cap is ignited. We do not consider this case because Di Corato 

and Maoz (2019), have already shown, in a frame similar to ours, that due to the run it 

yields lower welfare than under rationed entry. Thus, the superiority of the tax policy 

over the cap policy in the case of licensing implies that it is also better than the cap 

policy with no licensing.  

 It should be noticed that the assumption of perfectly competitive firms is crucial 

for the complete internalization of the external cost. It becomes then of interest, as a 

potential lead for future research, to extend the analysis in order to study how market 

power impacts, by distorting the industry output, the degree of internalization, and then 

to examine whether it also alters the result that the tax policy yields more welfare than 

the cap policy.  

 In comparing a tax policy to a cap policy in the presence of externalities, within 

a centrally planned framework, our study is also related to Weitzman (1974). Via a 

static model in which the policy maker is facing uncertainty about market outcomes, he 

concludes that a cap on quantity performs better than a tax if the marginal benefit curve 

is steeper than the marginal cost curve, and otherwise a tax does better. In contrast, we 

show the that tax policy is always better than the cap policy regardless of the relation 
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between the two slopes, and for general and standard forms of the demand function and 

the external cost function. The main reason for the difference between the results 

springs from the dynamic environment we portray, in contrast to the static analysis by 

Weitzman. Due to that, while the uncertainty that policy makers face in Weitzman’s 

model is about the current situation, in our model they have a perfect view of current 

situation and the uncertainty they face is about future development. Thus, at each point 

in time, the policy makers in our model can fit the best tax rate for the current situation. 

With a cap policy this is not possible in that, by the very nature of the underlying policy 

tool, the cap level is assumed to be credibly fixed over a sufficiently long time period. 

In that sense the dynamic setting gives an advantage to the tax policy. 

 We have shown that the endogenous entry by firms leads implicitly to a barrier 

capping the market price. In that sense, the introduction of an output tax is equivalent 

to a price cap regulation and relates the current study to previous research on the impact 

of a price cap on irreversible investment under uncertainty in the presence of 

competition (Dixit, 1991), monopoly (Dobbs, 2004) and oligopoly (Roques and Savva, 

2009). The main difference is that while in these papers the price cap is a control used 

for keeping prices low, in the current study the policy makers adjust this control 

upwards in order to delay and not foster the market expansion.        

 Finally, the results of our model are robust to the modification of adding a firm 

specific production cap alongside the cap on the aggregate industry output. More 

specifically, assume that the regulator announces a cap Q  on the aggregate industry 

output and impose that each firm may produce not more than 10 << λ  units. As one 

may immediately see, introducing this variation in our model set-up would have no 

impact on our results. The only thing that one should keep in mind is that in this case i) 
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the number of active firms in the industry is equal to λ/Q  and ii) the maximum number 

of firms entering the market is equal to λ/Q . 
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APPENDIX 

Appendix A – The value of an active firm 

In this Appendix, we present the derivation of the value function in (3), i.e. ( )QXV , . 

By a standard no-arbitrage argument (see e.g. Dixit, 1989), ( )QXV ,  is the solution of 

the following Bellman equation:  

 

(A.1)  ( ) [ ] ( ), ( , ) ,r V Q X dt P X Q M dt E dV X Q ⋅ ⋅ = − ⋅ +   ,  

 

which states that the instantaneous profit, [ ]( , )P X Q M dt− ⋅ , along with the expected 

instantaneous capital gain, ( ),E dV X Q   , from a change in X, must be equal to the 

instantaneous normal return, ( ) dtQXVr ⋅⋅ , .  

Itô's lemma states that since X is a geometric Brownian motion with parameter 

µ and σ then ( ),V X Q , being a twice differentiable function of X satisfies: 

 

(A.2)          ( ) ( ) ( )2 21
2, , ,XX XdV X Q X V X Q X V X Q dt X dZσ µ σ = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅  . 

 

 Applying (A.2) in (A.1), taking the expectancy recalling that E(dZ) = 0, and 

rearranging, yields:  

 

(A.3)         ( ) ( ) ( ) 0),(,,,22
2
1 =−+⋅−⋅⋅+⋅⋅⋅ MQXPQXVrQXVXQXVX XXX µσ . 

 

 Trying a solution of the type xb for the homogenous part of (A.3) and a linear 

form as a particular solution to the entire equation yields: 
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 (A.4)  ( ) ( ) ( ) ( )
r

M
r

QXPXQYXQZQXV −
−

+⋅+⋅=
µ

βα ,, , 

 

where 0<α  and 1>β  are the roots of the quadratic equation:  

 

(A.5)  0)1(2
2
1 =−⋅+−⋅⋅⋅ rxxx µσ . 

 

 Applying x = 0 and then x = 1, and bearing in mind that r > µ asserts that (A.5) 

has two roots, one of them negative and the other exceeds 1.  

The first term in (A.4), namely ( )
r

M
r

QXP −−µ
, , represents the expected present 

value of the flow of profits conditional on Q remaining forever at its current level. 

Therefore, the first and second term on the RHS of (A.3) should capture the impact that 

changes in Q over time have on the value of the firm in expected terms.  

By the properties of the Geometric Brownian Motion, when X goes to 0 the 

probability of ever hitting the barrier triggering a new entry, i.e., X*(Q), and, 

consequently, an increase in Q, tends to 0. This leads to the following limit condition: 

 

(A.6)  ( ) ( )[ ] 0lim
0

=⋅+⋅
→

βα XQYXQZ
X

. 

 

Note that as α < 0, (A.6) holds only if ( ) 0=QZ  for any 0>Q . Hence, 

substituting ( ) 0=QZ  into (A.3) gives (3). 

Finally, applying β for x in (A.5) leads to: 
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(A.6)  
21 1

2 2
2 2 2 2 21 1 1

2 2 2

( 1) ( 1)

(2 1) ( 1)
d

d

β β β ββ
σ σ β µ σ β σ β β µ β

⋅ ⋅ − ⋅ ⋅ −
= − = −

⋅ ⋅ ⋅ − + ⋅ ⋅ + ⋅ ⋅ ⋅ − + ⋅
 

 

        
21

2
2 21

2

( 1)
0

r

β β

σ β

⋅ ⋅ −
= − <

⋅ ⋅ +
, 

 

where the third equality follows from (A.4), evaluated at β, and the inequality springs 

from β > 1. 

 

Appendix B – Welfare maximization under a cap on the aggregate industry output 

 Substituting the derivative of (13) with respect to Q in (14), applying (12), and 

rearranging terms, yields: 

 

(B.1)  ( ) ( )
( )

*

*

' 1,Q
M D QPC Q Q

r r X Q βµ

 +
 = − − ⋅

−  
, 

 

Integrating (B.1) yields: 

 

(B.2)  ( ) ( ) ( )
( )

*

*

' 1, ,
Q

Q

M D QPC Q Q C Q Q dq
r r X Q βµ

 +
 − = − − ⋅ ⋅∫

−  
.  

 

The term ( ) βXQQC ⋅,  in (13) captures the welfare associated with future 

increases of the industry output. No such changes are possible if Q has reached the cap 

Q . Therefore, the following boundary condition holds at QQ = : 
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(B.3)  ( ) 0, =QQC ,  

 

Substituting (B.3) in (B.2) yields: 

 

(B.4)  ( ) ( )
( )

*

*

' 1,
Q

Q

M D QPC Q Q dq
r r X Q βµ

 +
 = − ⋅ ⋅∫

−  
.  

 

Appendix C – Proof of Proposition 6 

In this appendix, we show that welfare under an output tax exceeds welfare under a cap 

on the industry output. The proof is as follows:  

  

 (C.1)    ( ) ( )QXWQXW captax ,, −  

 

   
( )

( ) +⋅







⋅






 +
−

−
= ∫

∞

*
***

**

,
'

Q

dq
qX
X

r
qDM

r
P

β

τµ  

          +
( )

( )
( )

( )∫ ⋅




















⋅






 +
−

−
−








⋅






 +
−

−

*

*

*

***

** '
,

'Q

Q

dq
qX

X
r

qDM
r
P

qX
X

r
qDM

r
P

ββ

µτµ
 

 

   
( )

( ) +⋅







⋅

⋅−
+

= ∫
∞

*
*** ,)1(

'

Q

dq
qX

X
r
qDM

β

τβ  

         +
( )

( )
( ) ( )

( )∫ ⋅




















⋅

⋅−
⋅−+

−







⋅

⋅−
+

*

**** )1(
''

,)1(
'Q

Q

dq
qX

X
r

qDqDM
qX

X
r
qDM

ββ

β
β

τβ
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  >
( ) ( )

( )
( ) ( )

( )∫ ⋅







⋅













⋅−
⋅−+

−







⋅

⋅−
+

*

****

*

)1(
''

,)1(
'Q

Q

dq
qX

X
r

qDqDM
qX
qX

r
qDM

ββ

β
β

τβ
 

 

   = ( )
( ) ( )
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where:  

 

(C.2)  ( ) ( )
( ) ( )

*

** * ',

X q Mh q
M D qX q τ

≡ =
+

.  

 

It follows from D’(q) > 0 that ( )0 1h q< <  for any q > 0. This leads to the last inequality 

in (C.1) which holds because any function of the form ( ) ( )1 1g x x xβ β≡ − + ⋅ −  is 

positive within the range 0 < x < 1 since: 

 

o  ( )0 1 0g β= − >  

o ( )1 0g =   

o ( ) ( )1' 1 0g x xββ −= ⋅ − <  for all 0 < x < 1.  
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