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Earnings dynamics and optimal capital structure 

Abstract 

We develop a dynamic trade-off model with mean-reversion in earnings and a growth option. The 

firm optimizes initial debt and optimally adjusts leverage during the financing of growth option 

investment. We provide predictions and managerial implications on the impact of long-term 

profitability, mean reversion speed, volatility of earnings and debt priority structure on firm value, 

the dynamics of leverage and credit spreads and regarding the optimal timing of growth option 

investment and default. Our model shows that the relation between current profitability and 

leverage follows a U-shape. The U-shape is driven by growth options and we show that it also 

holds for firms with non-stationary earnings. We estimate stochastic process parameters and 

provide empirical evidence on the relation of leverage with profitability and other common factors 

used in the literature providing a first comparison between mean reverting and non-stationary 

firms.  

 

Keywords: trade-off model; mean-reversion; investments; leverage; real options  
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1. Introduction 

Financial flexibility is important for firms (see Graham and Harvey, 2001 and Graham, 2022) and 

dynamic models which consider adjustments in leverage and real investments provide a vehicle 

for understanding firms’ capital structure decisions. Indeed, Strebulaev (2007) concludes that a 

proper study of the evolution of capital structure requires a model that combines both dynamic 

capital structure decisions and real investment. While theoretical models combining capital 

structure and real investment decisions are well-developed (e.g., Hennessy and Whited (2005), 

Titman and Tsyplakov (2003), and Hackbarth and Mauer (2012)), a link between the nature of 

shocks (i.e., temporary or permanent) on firm’s cash flows and corporate financial decisions is still 

a challenging task. In this paper we focus on earnings dynamics and revisit the empirical 

predictions of dynamic trade off models, as well as the profitability-leverage relationship puzzle.1 

 

We develop a model where earnings follow an arithmetic mean-reverting (AMR) process and 

incorporate dynamic financing decisions and a growth option. Levendorskii (2005) uses the AMR 

process to study optimal exercise boundaries and pricing of perpetual American call and put 

options. Recently, Briest et al. (2022) have applied this process to study the investment behavior 

of power grid-stabilizing, flexibility-providing energy projects.  None of these papers study capital 

structure decisions. Instead, following Hackbarth and Mauer (2012), in our model the firm has two 

debt issue decisions (initially and when it finances the exercise of the growth option), a priority 

structure decision (for the initial and subsequent debt issue), an investment decision (when to 

exercise the growth option), and two default decisions (before and after the exercise of the growth 

option). The literature studying the effect of mean reversion on the investment and disinvestment 

decisions of firms has used mostly the geometric mean-reverting (GMR) process (Sarkar, 2003; 

Tserkrekos, 2010; Metcalfe and Hassett, 1995, Reymar, 1991). The same type of process is 

employed in Sarkar and Zapatero (2003), where they reformulate Leland’s (1994) trade-off model 

incorporating mean reversion in the corporate earnings process and study debt financing without 

investment decisions. With GMR, however, cash flows can never become negative and thus 

allowing for negative earnings might increase the importance of financial flexibility. In addition, 

 
1 We are further motivated by empirical studies that show that not properly considering earnings or cash flow 
dynamics may lead to misleading findings. One such example is leverage mean reversion (e.g., found in Fama and 
French, 2002 and Flannery and Rangan 2006). Chen and Zhao (2007) and Chang and Dasgupta (2009) also discuss 
hazards of not properly employing earnings dynamics. 
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a GMR process assumes volatility increases proportionally with profitability while in an AMR 

process volatility is independent of the profitability level. Transitory shocks have been used 

extensively to study optimal cash management policies (e.g., Décamps et al. 2016, Cadenillas et 

al, 2007). In a capital structure setting and more related to our framework, Gorbenko and 

Strebulaev (2010) provide a contingent claim trade-off model with both temporary and permanent 

shocks. In their model, the temporary component of the shocks is driven by Poisson jump shocks 

that arrive in discrete time and then fade in expectation over time so that earnings mean-revert to 

permanent levels. Raymar (1991) studies dynamic decisions within a mean reversion setting, 

however, he focuses on short-term (single period) debt and exogenous default. In comparison with 

earlier work, our analysis allows for analytic solutions involving a growth option, two stages of 

financing and endogenous default and thus provides a framework which can be contrasted with 

Hackbarth and Mauer (2012) to allow the study and comparison of predictions for both firms with 

non-stationary and stationary earnings processes.  

 

One of our theoretical results challenges the traditional interpretation of the empirical negative 

relation between profitability and leverage, which is often cited against trade-off models and in 

favour of pecking order theory (see Shyam-Sunder and Myers (1999) and follow-up work). In 

contrast with Sarkar and Zapatero (2003), who find a negative relation between profitability and 

leverage, we find that leverage has a U-shape relationship with profitability.2 This effect is driven 

by the presence of a growth option since at low levels of earnings equity increases at a faster rate 

due to the growth option upside potential, however, as the increase in current profitability brings 

the firm closer to exercising its growth option and enjoying an expansion of the net benefits of 

debt, debt value improves at a higher rate. Besides providing this new theoretical contribution in a 

mean reversion setting, we also contribute to the literature by clarifying that a U-shape (also growth 

option driven) relation exists for firms following non-stationary earnings, i.e., within our setting 

when mean reversion speeds tend to zero or within the Hackbarth and Mauer (2012) setting where 

earnings follow a GBM. These predictions are in stark contrast to predictions based on static trade-

 
2 In the paper “profitability” refers to the level of earnings just like in Sarkar and Zapatero (2003). However, the U-
shape relation holds also when associating rates of return (level of earnings scaled with assets) with leverage.  The 
latter is more relevant for empirical work which associates rates of return with leverage. We thus expect that for 
firms with earnings following an AMR the relation between rates of return and leverage will generally follow a U-
shape.  
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off models which predict a positive leverage-profitability relation. In Tserlukevich (2008) who 

uses the Geometric Brownian Motion assumption, inaction caused due to irreversibility and fixed 

costs creates a negative relation between leverage and profitability. In contrast, in our paper our 

focus is at investment points where we show that the leverage-profitability relation is generally U-

shaped, irrespective of earnings dynamics. Danis et al. (2014) focus on dynamic inaction models 

where firms make infrequent capital structure adjustments along the theoretical lines of the model 

of Goldstein, Ju and Leland (2001).  In contrast, our work focuses on investment related capital 

structure adjustments.   

 

Furthermore, our theoretical analysis predicts that leverage is decreasing in earnings volatility and 

growth options (i.e., the expansion factor of future revenues) and positively related to the mean 

reversion speed and long-term profitability. We also provide predictions related to dynamic 

adjustments (changes in leverage) when firms reach a state where they exercise their investments 

with no more growth options available. Our framework thus contributes to related works focusing 

on investment dynamics (Hennessy and Whited, 2005 and Dudley, 2012). We also provide further 

insights relating the debt conservatism puzzle relating to earnings dynamics. We find that a lower 

speed of mean reversion implies a higher volatility and results in more conservative (low) leverage 

levels. Our prediction is in line with Gorbenko and Strebulaev (2010) who show that equity holders 

benefit disproportionately from positive shocks and thus demand ex ante compensation which 

reduces equity holders’ desire to rely on debt. In addition, we show that the higher debt 

conservatism shown in Hackbarth and Mauer (2012) under “me-first” priority structure of debt 

(compared to equal priority) is preserved in the presence of mean reversion. DeAngelo et al. (2018) 

shows that firms may indeed preserve financial flexibility for future investments. 

  

In addition to the empirical predictions, our framework provides several new managerial 

implications regarding optimal investment timing and default decisions in the presence of mean 

reversion. We show that optimal investment is delayed for firms with earnings which are more 

volatile and have low levels of long-term profitability or firms with low levels of expansion 

(growth) options. The impact of mean reversion hinges upon the level of long-term profitability. 

When long-term profitability is high, an elevated degree of mean reversion accelerates investment. 

On the other hand, investment is postponed when profits mean-revert faster to low long-term 
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profitability levels. Optimal default is delayed for firms with higher earnings volatility, higher 

levels of growth options and is U-shaped with respect to long-term profitability and mean reversion 

speed. Finally, we discuss how investment and default decisions are affected by the priority rules 

of debt at default. 

 

In the empirical part of the paper, we first show how to estimate the parameters of the earnings 

process and using an Augmented-Dickey Fuller test document that this type of process 

characterizes a vast majority (about 60%) of the universe of non-financial, non-regulated US firms 

in the COMPUSTAT database with 40 consecutive quarterly earnings observations (that allows 

for reasonable accuracy in the estimation of model parameters). We provide the first evidence on 

the characteristics of both mean reverting and non-stationary firms. Our median mean reverting 

firm has more leverage, lower profitability, smaller size based on sales, less growth potential based 

on market to book and more tangible assets compared to our sample of non-stationary firms. The 

evidence appears consistent with studies that do not separate the two groups and do not place 

requirements of estimating the stochastic process parameters (e.g., Danis et al., 2014). The 

existence of more tangible assets for mean reverting firms is consistent with a larger concentration 

of   mean reversion among manufacturing firms (about 75% compared to 51% for non-stationary 

firms). Our multivariate analysis confirms a negative relation of leverage with our estimated 

volatility measure and a positive relation with long-term profitability and mean reversion speed. 

However, we document a consistently negative relation of profitability with leverage both 

unconditionally, as well as conditional on investment events involving debt financing for both 

mean reverting and non-stationary firms. Our analysis provides further evidence that supports the 

leverage-profitability puzzle (see also Eckbo and Kisser, 2021) by accounting for earnings 

dynamics. We find however that the negative relation of profitability with leverage is reduced at 

high profitability levels for firms with growth options.  

 

Our contributions can be summarized as follows. First, we extend earlier studies studying mean 

reversion in earnings by providing empirical predictions based on a more realistic mean reversion 

process, multiple financing stages and alternative priority rules for debt and a growth option. We 

also revisit and clarify the empirical predictions for non-stationary firms in the presence of growth 

options. Secondly, we provide the first evidence on the empirical prevalence of mean reversion 
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and non-stationarity of earnings, a comparison of the characteristics of firms and the factors 

affecting leverage for the two groups of firms. Our study thus contributes to the literature 

attempting to better characterize firms’ dynamic capital structure decisions with theoretically 

motivated predictions. This literature is extensive and includes work that relies on structural 

estimation (e.g., Hennessy and Whited, 2005 and Strebulaev, 2007) and work such as that of Danis 

et al. (2014) (see also Eckbo and Kisser, 2021) who test dynamic inaction models where firms 

make infrequent capital structure adjustments along the theoretical lines of Goldstein, Ju and 

Leland (2001). More related to our work, Tserlukevich (2008) focuses on a model with investments 

which incorporates irreversibility and fixed costs of investment, however, in comparison our paper 

shows new insights relating the leverage-profitability relation during investments events involving 

debt financing (and not in the inaction region) and clarifies the impact of earnings dynamics.    

 

Our paper is organized as follows. Section 2 describes the theoretical model with mean reversion 

in earnings and a growth option. Section 3 presents the numerical sensitivity results and 

summarizes the model predictions as well as predictions for firms following non-stationary 

earnings. Section 4 shows the estimation approach of the earnings process and empirically applies 

this to the universe of US firms, while Section 5 concludes. Appendix 1 provides a summary of 

the notation of the theoretical model. An online Appendix provides details for the derivation of the 

theoretical model and additional tests.3  

 
2. The model with mean reversion in earnings 

2.1. Model assumptions 

We model a firm with existing assets generating net cash flow or earnings x. The earnings stream 

x follows an arithmetic mean-reverting (ARM) process as follows:  

                                                     𝑑𝑥 = 𝑞(𝜃 − 𝑥)𝑑𝑡 + 𝜎𝑑𝑧                                                    (1) 

 
3 Specifically, online Appendix 1 shows the derivation of the homogeneous differential equation solution, online 
Appendix 2 shows the derivation of the solutions for the basic and general claims involving two boundaries within a 
mean-reverting framework and online Appendix 3 shows the proofs for security and firm values presented in the 
main text. Online Appendix 4 presents additional sensitivity results of the main model and sensitivity that confirm 
the robustness of the U-shape of leverage with respect to profitability, irrespective of the earnings process, as well as 
results of sensitivity with respect to profitability in the absence of growth option. 
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where q defines the mean reversion speed, θ defines the long-term mean to which earnings revert, 

σ the project earnings volatility and dz is the increment to a standard Brownian Motion process. 

The firm has a growth opportunity to increase earnings to a level 𝑒 𝑥 at an optimal time. The firm 

selects an optimal level of perpetual debt 𝐷𝑏(𝑥) at time zero (stage 1) with a promised (coupon) 

payment 𝑅଴ and pays corporate taxes at a constant rate 𝜏 with a full-loss offset scheme.4  

The bankruptcy trigger 𝑥௕ is endogenously and optimally chosen by equity holders by maximizing 

equity value.  When earnings 𝑥 drop to the low threshold level 𝑥௕ then the firm goes bankrupt and 

the original debt holders take over and obtain the firm’s unlevered assets 𝑈𝑏(𝑥) net of proportional 

bankruptcy costs b, 0<b<1. On the other hand, if earnings rise to a high level 𝑥ூ then the firm 

makes a capital (growth) investment I and expands earnings by e > 1, thus earnings after 

investment become 𝑣 = 𝑒 𝑥. The optimal timing for investment is chosen to maximize the market 

value of equity (“second-best investment”). Post investment earnings also follow a mean-reverting 

process of the following form: 

                                               𝑑𝑣 = 𝑞(𝑒𝜃 − 𝑣)𝑑𝑡 + 𝑒𝜎𝑑𝑧                                                          (2) 

Thus, after investment, earnings follow an AMR process with standard deviation 𝑒𝜎 and long-term 

mean 𝑒𝜃. 

New investment can be financed by additional perpetual debt 𝐷𝑎(𝑥) with coupon 𝑅ଵ. Post 

investment, equity holders select the earnings level 𝑣௅ which triggers bankruptcy. Priority rules 

define the amount of unlevered assets obtained by original and subsequent debt holders in the event 

of bankruptcy. Like Hackbarth and Mauer (2012) we allow for commonly observed priority rules 

which include absolute priority of original debt, pari-passu (equal priority) and absolute priority 

for subsequent debt holders.  

The optimization of capital structure is performed by selecting the initial coupon 𝑅଴ and 

subsequent coupon level 𝑅ଵ jointly with optimally chosen investment and default levels.  𝑅଴ is 

chosen to maximize initial firm value (equity plus initial debt financing obtained) while 𝑅ଵ is 

chosen to maximize equity plus the proceeds from the new debt issue. This amounts to “second-

best financing”, as suggested in Hackbarth and Mauer (2012). We do not focus on agency 

 
4 We do not consider tax convexity issues (see Sarkar 2008) but assume that constant tax rate τ is applied 
irrespective of the earnings level. Our analysis thus likely exaggerates somehow the true tax benefits levels.  
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considerations in this paper and thus do not consider a comparison with a “first-best” optimization 

for either the selection of investment timing and/or financing. “First-best” investment timing 

would be the one that caters for debt holders value by maximizing firm (instead of equity only) 

value and “first-best financing” allows that the choice of R1 caters for the dilution effects on initial 

debt (see Hackbarth and Mauer, 2012 for further details). 

2.2. Security and firm valuation after investment 

With an AMR process the solution to the value of claims becomes complex. In Online Appendix 

1 we show the derivation of the solutions to the homogeneous differential equations with AMR. 

Below, we utilize the solution of the basic claims derived in Online Appendix 2. Online Appendix 

3 provides full details relating the valuation of all claims.  

2.1.1.  Equity and unlevered assets after investment 

Equity value after investment is equal to: 

                                    𝐸𝑎(𝑣) = 𝐸𝑎௣(𝑣) − 𝐸𝑎௣(𝑣௅) ቀ
௉భ(௩)

௉భ(௩ಽ)
ቁ                                                    (3) 

where 𝑣 = 𝑒𝑥 are expanded cash flows following investment and 

                           𝐸𝑎௣(𝑣) = ቀ
ଵ

௤ା௥
𝑣 +

௤ఏ∗

௥(௤ା௥)
−

ோబାோభ

௥
ቁ (1 − 𝜏)                                                  (4) 

with 𝜃∗ = 𝑒𝜃.                                                        

In equation (3) the term 𝑃ଵ(∙)  is defined in equation (5a) below. Equation (5b) also defines 𝑃ଶ(∙)  

that will be used in subsequent equations for the value of securities.         

                                      𝑃ଵ(𝑥) =  𝑒
భ

ర
൬

(ೣషഇ)ඥమ೜

഑
൰

మ

 𝐷ఔ ൬
(௫ିఏ)ඥଶ௤

ఙ
൰                                                  (5a) 

                                      𝑃ଶ(𝑥) = 𝑒
భ

ర
൬

(ೣషഇ)ඥమ೜

഑
൰

మ

 𝐷ఔ ൬−
(௫ିఏ)ඥଶ௤

ఙ
൰.                                              (5b) 

where 𝐷ఔ(𝑧) =
ଵ

ଶ഍√గ
ቂcos(𝜉𝜋) Γ ቀ

ଵ

ଶ
− ξቁ 𝑦ଵ(𝑎, 𝑧) − √2 sin(𝜉𝜋) Γ(1 − ξ) 𝑦ଶ(𝑎, 𝑧)ቃ                (6) 

                                                                  𝑧 =
௫ିఏ

ఙഥ
, 𝜎ത = 𝜎/ඥ2𝑞                       
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𝑎 = −𝜈 −
1

2
, 𝜈 = −

𝑟

𝑞
< 0 

𝜉 =
1

2
𝑎 +

1

4
 

                                               Γ(∙)= is the Gamma function  

                                      𝑦ଵ(𝑎, 𝑧) = 𝑒ି 
೥మ

ర   𝐹ଵଵ ቀ
ଵ

ଶ
𝑎 +

ଵ

ସ
;  

ଵ

ଶ
;  

௭మ

ଶ
ቁ                                                                                        

                                      𝑦ଶ(𝑎, 𝑧) = 𝑧 𝑒ି 
೥మ

ర   𝐹ଵଵ ቀ
ଵ

ଶ
𝑎 +

ଷ

ସ
;  

ଷ

ଶ
;  

௭మ

ଶ
ቁ                                  

In the above 𝐹ଵଵ (𝛼; 𝛽; 𝑧) = 𝑀(𝛼; 𝛽; 𝑧) is the confluent hypergeometric function (see 

Abramowitz and Stegun, 1972). The Gamma function is defined as follows:  

𝛤(𝑛) = න 𝑥௡ିଵ𝑒ି௫𝑑𝑥
ஶ

଴

 

where the integral converges for n > 0. Note that 𝛤(𝑛 + 1) = 𝑛𝛤(𝑛), so for integer n this 

function coincides with the factorial function, that is, 𝛤(𝑛 + 1) = 𝑛!.  

Note that in equation (3) the term 𝑄(𝑣) =
௉భ(௩)

௉భ(௩ಽ)
 can be interpreted as the value of a basic claim 

which pays one dollar when 𝑣௅ is reached from above from 𝑣.  

The value of unlevered assets after investment is: 

                                      𝑈𝑎(𝑣) = ቂ
ଵ

௤ା௥
𝑣 +

௤ఏ∗

௥(௤ା௥)
ቃ (1 − 𝜏)                                                         (7) 

In expression (7) the term 
ଵ

௤ା௥
𝑣  represents the transitory component and the constant 

௤ఏ∗

௥(௤ା௥)
 is a 

permanent component. Note that when q = 0, then expression (7) simplifies to v(1-τ)/r, which is 

the value for an arithmetic process with zero drift. When the earnings level changes, the value 

𝑈𝑎(𝑣) is affected only by the transitory part. Since the transitory part is a decreasing function of 

the speed of reversion q, if mean reversion becomes stronger (q increases), the transitory part 

becomes less important and if q goes to infinity, it disappears. To avoid negative liquidation values 

for initial debt holders at bankruptcy we ensure that 𝑈𝑎(𝑣), as well as 𝑈𝑏(𝑥), do not drop below 

zero at the bankruptcy thresholds (see Online Appendix 3 equations A29 and A44).   
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2.2.1. Debt and firm value after investment  

Debt value after investment for the initial debt issued at time zero 𝐷𝑎଴(𝑣) and the second debt 

issued at the investment trigger 𝐷𝑎ଵ(𝑣) are given by: 

                                   𝐷𝑎௜(𝑣) =
ோ೔

௥
+ ቀ𝐷𝑎௜(𝑣௅) −

ோ೔

௥
ቁ ቀ

௉భ(௩)

௉భ(௩ಽ)
ቁ                                           (8) 

where 𝐷𝑎௜(𝑣௅) depends on the priority structure.  In the case of equal priority of the two debt 

issuers, liquidation proceeds are shared depending on the scale of payments: 

                                    𝛽଴ =
ோబ

ோబାோభ
 ,       𝛽ଵ = 1 − 𝛽଴ =

ோభ

ோబାோభ
                              

Thus, with equal priority the boundary condition for debt becomes: 

                                           𝐷𝑎௜(𝑣௅) = 𝛽௜  (1 − 𝑏) 𝑈𝑎(𝑣௅)                                                   (9)  

In the case the first lender has secured priority to other creditors (“me-first” for initial debt) then 

the boundary conditions become: 

                         𝐷𝑎଴(𝑣௅) = 𝑚𝑖𝑛 ቔ(1 − 𝑏) 𝑈𝑎(𝑣௅),
ோబ

௥
ቕ                                         (10a) 

                        𝐷𝑎ଵ(𝑣௅) = (1 − 𝑏) 𝑈𝑎(𝑣௅) − 𝐷𝑎଴(𝑣௅)                                       (10b) 

 

In the case that second lender have secured priority to other creditors then the boundary 

conditions become: 

                            𝐷𝑎ଵ(𝑣௅) = 𝑚𝑖𝑛 ቔ(1 − 𝑏) 𝑈𝑎(𝑣௅),
ோభ

௥
ቕ                                     (11a)  

                      𝐷𝑎଴(𝑣௅) = (1 − 𝑏) 𝑈𝑎(𝑣௅) − 𝐷𝑎ଵ(𝑣௅)                                        (11b)  

Firm value after investment is then given by the sum of equity plus debt values after investment: 

                                           𝐹𝑎(𝑣) = 𝐸𝑎(𝑣) + 𝐷𝑎଴(𝑣) + 𝐷𝑎ଵ(𝑣)                                   (12a) 

Replacing equation (3) and equations (8) for 𝐸𝑎(𝑣), 𝐷𝑎଴(𝑣) and 𝐷𝑎ଵ(𝑣) in equation (12a) above 

we obtain an alternative characterization of firm value as follows: 

                                   𝐹𝑎(𝑣) = 𝑈𝑎(𝑣) + 𝑇𝐵𝑎(𝑣) − 𝐵𝐶𝑎(𝑣)                                               (12b) 
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where 𝑈𝑎(𝑣) is given in equation (7) and  𝑇𝐵𝑎(𝑣), 𝐵𝐶𝑎(𝑣)  are defined as follows: 

𝑇𝐵𝑎(𝑣) = ቀ
ோబାோభ

௥
ቁ 𝜏 − ቀ

ோబାோభ

௥
ቁ 𝜏 ቀ

௉భ(௩)

௉భ(௩ಽ)
ቁ  ,  𝐵𝐶𝑎(𝑣) = 𝑏𝑈𝑎(𝑣௅) ቀ

௉భ(௩)

௉భ(௩ಽ)
ቁ. We also define  

𝑁𝐵𝑎(𝑥) = 𝑇𝐵𝑎(𝑣) − 𝐵𝐶𝑎(𝑣) as a summary measure of the net benefits of debt after 
investment.  

 

2.3. Valuation before investment 

 

2.3.1. Equity and unlevered value before investment 

Equity value before investment 𝐸𝑏(𝑥) is given by: 

𝐸𝑏(𝑥) = ቀ𝐸𝑎(𝑒 𝑥ூ) − 𝐼 + 𝐷𝑎ଵ(𝑒 𝑥ூ) − 𝐸𝑏௣(𝑥ூ)ቁ 𝐽(𝑥) − 𝐸𝑏௣(𝑥௕) 𝐿(𝑥) + 𝐸𝑏௣(𝑥)          (13) 

where 𝐸𝑏௣(𝑥) = ൬
ଵ

௤ା௥
𝑥 +

௤ఏ

௥(௤ା௥)
−

ோబ

௥
൰ (1 − 𝜏).  

𝐽(𝑥) in equation (13) defines the value of a basic claim that pays one dollar if x hits trigger 𝑥ூ 

and zero when it hits 𝑥௕. Similarly, we define a basic claim 𝐿(𝑥) that pays one dollar if x hits 

trigger 𝑥௕ and zero when it hits 𝑥ூ. The solutions to these basic claims are as follows (see Online 

Appendix 1 and 2): 

                             𝐽(𝑥) =
௉మ(௫್)

஽(௫಺,௫್)
𝑃ଵ(𝑥) −

௉భ(௫್)

஽(௫಺,௫್)
 𝑃ଶ(𝑥)                                       (14) 

                                        𝐿(𝑥) = −
௉మ(௫಺)

஽(௫಺,௫್)
𝑃ଵ(𝑥) +

௉భ(௫಺)

஽(௫಺,௫್)
 𝑃ଶ(𝑥)                                        

where 𝐷(𝑥ூ , 𝑥௕) =  𝑃ଵ(𝑥ூ)𝑃ଶ(𝑥௕) − 𝑃ଵ(𝑥௕)𝑃ଶ(𝑥ூ).  

The value of unlevered assets before investment is given by:  

                                   𝑈𝑏(𝑥) = ቂ
ଵ

௤ା௥
𝑥 +

௤ఏ

௥(௤ା௥)
ቃ (1 − 𝜏)                                                    (15) 

2.3.2. Debt and firm value before investment 

 

Initial (t = 0) debt value is given by: 
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𝐷𝑏(𝑥) =
ோబ

௥
+ ቀ𝐷𝑎଴(𝑥ூ) −

ோబ

௥
ቁ 𝐽(𝑥) + ൬(1 − 𝑏) 𝑈𝑏(𝑥௕) −

ோబ

௥
൰ 𝐿(𝑥)                                 (16) 

where equation for 𝐷𝑎଴(𝑥) is given in equation (8) and  𝑈𝑏(𝑥) in equation (15).  

Thus, firm value before investment is the sum of equity plus debt before investment: 

                     𝐹𝑏(𝑥) = 𝐸𝑏(𝑥) + 𝐷𝑏(𝑥)                                                                              (17a) 

Replacing equation (13) for 𝐸𝑏(𝑥) and equation (16) for 𝐷𝑏(𝑥) we obtain the following 

breakdown of firm value at t = 0: 

𝐹𝑏(𝑥) = 𝑈𝐵(𝑥) + 𝑈𝑎(𝑣ூ) 𝐽(𝑥) + 𝑇𝐵𝑏(𝑥) + 𝑇𝐵𝑎(𝑣ூ) 𝐽(𝑥) − 𝐵𝐶𝑏(𝑥) − 𝐵𝐶𝑎(𝑣ூ)𝐽(𝑥) − 𝐼 𝐽(𝑥)                                                                                                                             
(17b) 

where  𝑈𝐵(𝑥) = 𝑈𝑏(𝑥) − 𝑈𝑏(𝑥ூ)𝐽(𝑥)  with 𝑈𝑏(∙) given in equation (15),   𝑇𝐵𝑏(𝑥) =
ఛோబ

௥
−

ఛோబ

௥
𝐽(𝑥)-

ఛோబ

௥
𝐿(𝑥) and 𝐵𝐶𝑏(𝑥) = 𝑏𝑈𝑏(𝑥௕)𝐿(𝑥). We also define the net benefits of debt at t = 0 as  

𝑁𝐵𝑏(𝑥) = 𝑇𝐵𝑏(𝑥) − 𝐵𝐶𝑏(𝑥).  

 

2.4.  Optimal investment, default, and capital structure 

In this section we describe smooth pasting (optimality) conditions. First, we demand that the 

derivative of equity after investment at 𝑣௅ should be zero to ensure that equity holders choose the 

bankruptcy trigger optimally following investment. This implies the condition: 

                                                  𝐸𝑎ᇱ(𝑣௅) = 0 .                                                                  (18)  

Note that the optimality condition in equation (18) can be stated in terms of the underlying x with 

the condition 𝐸෨𝑎ᇱ(𝑥௅) = 0  where 𝐸෨𝑎(∙) is equation defined in equation (3) evaluated at 𝑣 = 𝑒 𝑥. 

Similarly, we demand that the derivative of equity value before investment should be zero at 

bankruptcy trigger  𝑥௕: 

                                                  𝐸𝑏ᇱ(𝑥௕) = 0.                                                                         (19) 

We use  “second-best investment” optimization for the investment trigger 𝑥ூ which accounts for 

raising the optimal new level of debt financing, however, it does not account for the effect of 

investment on existing debt holders. This translates into: 

                                                𝐸𝑏ᇱ(𝑥ூ) = 𝐸෨𝑎ᇱ(𝑥ூ) + 𝐷෩𝑎ଵ′(𝑥ூ)                                               (20) 
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Note that under “first-best investment” optimization (not used in our subsequent analysis) equity 

holders consider the best interest of debt issuers by optimizing firm value. This would imply the 

following condition 𝐹𝑏ᇱ(𝑥ூ) = 𝐹෨𝑎ᇱ(𝑥ூ) where 𝐹෨𝑎ᇱ(𝑥ூ) is equation (12) replacing 𝑣 = 𝑒 𝑥. “First-

best investment” would be useful for analysing agency issues which is not the goal of this paper.  

The optimal capital structure is selected by performing a dense grid search for both the initial and 

subsequent coupon levels such that 𝑅଴ and 𝑅ଵ. 𝑅଴ is chosen to maximize initial firm value, i.e., 

equity plus initial debt financing obtained (see equation, 17a) while 𝑅ଵ is chosen to maximize 

equity plus the proceeds from the new debt issue (equation 20).  Both 𝑅଴ and 𝑅ଵ also satisfy 

optimally chosen investment and default levels (see equations 18, 19). This optimization identifies 

the initial and subsequent debt levels in the firm’s capital structure. Note that due to equation (20) 

the coupon level 𝑅ଵ is chosen to maximize equity plus the new debt proceeds (“second-best 

financing”).  

 

3. Hypotheses development  

3.1. Sensitivity analysis of the model with mean reversion in earnings 

In this section we provide numerical sensitivity results with respect to main parameters that will 

be analyzed also empirically next which are the mean reversion speed (q), long-term profitability 

(θ), earnings level (x) and growth option expansion factor (e). We provide a summary of the effect 

of other parameters in Appendix A.4.1. We explore the impact of these variables on firm value, 

leverage ratio levels and the change in leverage ratios when growth options are exercised, and the 

credit spreads. We also study the effect of alternative priority rules for debt. We also focus on the 

development of testable empirical predictions relating to leverage ratios in the cross section. Before 

moving on, it is important to clarify that the sensitivity results relating the initial leverage ratios at 

t = 0 reported in our sensitivity analysis (see Levb reported in subsequent tables) provide a natural 

way to form predictions on the leverage in the cross section when firms exercise their investments 

by also considering future growth opportunities being available. This is despite the fact we do not 

impose an initial cost at t = 0 since imposing an initial cost would not alter the directional effects 

of comparative statics. On the other hand, the leverage ratios reported at the follow-on investment 

stage (LevT reported in subsequent tables) reflect leverage ratios when firms reach a state where 

future options are no longer available (e.g., firms reaching a mature steady state). We report these 
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follow-on leverage ratios since they provide interesting time dynamics (e.g., firms leverage 

comparisons between young vs mature firms), however, our subsequent hypotheses and empirical 

tests rely solely on predictions relating the leverage ratios in the cross section based on initial 

leverage ratios when future growth opportunities exist.  

Our base case parameters are as follows. We use a normalized level of current earnings at the level 

x = 1. Following Hackbarth and Mauer (2012) we take a risk-free rate of r = 0.06, a tax rate τ = 

0.15. For the growth option we also follow the same study and use e = 2 and an investment cost I 

= 10 (i.e., the cost of investment is ten times the current earnings level as used in Hackbarth and 

Mauer, 2012). We take proportional bankruptcy costs b = 0.5 as in Leland (1994). For the mean-

reverting stochastic process parameters we follow Sarkar and Zapatero (2003) and use σ = 0.4, 

mean reversion speed q = 0.1 and long-term mean θ = 1. The parameters of the AMR process are 

in line with empirical estimates provided in the empirical section of the paper.  

For all subsequently reported results we report sensitivity until 𝑥 < 𝑥ூ remains valid. In all 

simulations we ensure that the value of unlevered assets at default thresholds which defines 

recovery values for debt holders at default (net of bankruptcy costs) is never negative (see 

discussion following equations A29 and A44 in the Online Appendix 3). Finally, where necessary 

to show a particular direction of an effect more clearly, we provide a denser sensitivity analysis.   

Table 1 provides interesting new insights with respect to mean reversion speed q. We observe that 

an increase in mean reversion speed q decreases 𝑥ூ which implies an acceleration of investment 

irrespective of long-term levels of profitability (see Panel A and also that Invb(x) in Panel B 

becomes higher). The acceleration of investment is consistent with real options intuition since a 

higher mean reversion speed implies a lower volatility of earnings (see eq. 23 which formalizes 

this point). Consistently, initial coupons and leverage increase with the speed of mean reversion. 

Our results thus confirm and elaborate on Gorbenko and Strebulaev (2010) who have also shown 

that more persistent shocks result in higher leverage ratios.5 We observe that the relation between 

leverage and q is positive also at the investment trigger, i.e., when firms enter a stage with no 

further options available. With respect to leverage dynamics, we observe that an increase in the 

 
5 We show that the observed higher leverage ratios for high q are driven by different value changes of equity and 
debt depending on long-term profitability. When long-term profitability is high, a higher q increases both equity and 
debt, albeit the latter grows faster. When long-term profitability is low, debt increases with q, however, equity 
decreases.  
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speed of mean reversion results in a decrease in leverage relative to previous levels when firms 

exercise their investments with no further follow-on growth options. This effect holds irrespective 

of long-term profitability level. Credit spreads decrease as the speed of mean reversion increases 

for both the base case of long-term profitability θ and the case where θ is low, which is also 

consistent with the fact that a higher q implies lower volatility.  

Firm value is increasing in the speed of mean reversion when long-term profitability is high (see 

base case) and decreasing when long-term profitability is lower. Thus, more generally one should 

expect a U-shape for intermediate values of long-term profitability. Such a U-shape can be 

explained with reference to the effect of speed of mean reversion on volatility which shows a 

similar U-shape relation with leverage.   

[Insert Table 1 here] 

Firms and investors often consider long-term profitability prospects when making policy or 

investment decisions.6 Table 2 shows that an increase in long-term profitability (θ) accelerates 

investment as indicated by the lower 𝑥ூ (see panel A) and the higher expected investment costs 

(Invb(x)) (see panel B). A higher long-term profitability creates a U-shape with respect to default 

thresholds 𝑣௅ and 𝑥௕. As expected, higher long-term profitability increases firm value, increases 

the initial leverage ratio, and reduces credit spreads. The positive relationship between θ and the 

leverage ratio and the negative relation between θ and credit spreads holds also at the investment 

threshold. Our results show that when the firm exercises its investment options reaching a state 

with no further growth options available, leverage decreases with respect to the level long-term 

profitability. This is driven by the lower threshold where investment takes place when long-term 

profitability is high which does not allow for high leverage levels at the investment trigger 

compared to earlier levels.   

[Insert Table 2 here] 

While long-term profitability has a positive effect on leverage ratios, this is not generally the case 

with respect to current profitability levels as we show below. Table 3 shows a negative relation 

 
6 For example there is extensive debate relating the long-term prospects of Tesla: 
https://www.forbes.com/sites/sergeiklebnikov/2022/06/09/tesla-stock-can-jump-another-50-thanks-to-superior-
growth-in-the-years-ahead-analysts-say/?sh=61363ad51f06 
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between leverage and profitability levels (see panel B) for the base case parameters for a wide 

range of x values, while for high values of x, the relation becomes positive. Thus, there is an overall 

U-shape relation between leverage and profitability with x.  

[Insert Table 3 here] 

Sarkar and Zapatero (2003) have shown in the context of GMR that the relation of leverage and 

profitability is negative. In contrast, we show that for high current profitability where profitability 

levels become close to the investment trigger the result may be reversed, and debt values may 

increase more rapidly compared to equity (hence resulting in an increase in the leverage ratio).7 

We have conducted additional sensitivity analysis showing that the U-shape is robust to alternative 

parameterizations such as different long-term profitability or different mean-reversion speeds 

(Online Appendix 4.2. shows additional results). In fact, this relation holds for 𝑞 → 0 indicating 

that this U-relation holds also for non-stationary firms (more on this in the next section). Empirical 

studies usually consider the return on asset instead of the level of profits. Interestingly, one can 

easily verify that a theoretical constructed measure of return on assets defined as the level of 

earnings scaled with unlevered assets (Ub(x)) is monotonically increasing in x and so the U-shape 

holds not only with the level of earnings but also with respect to return on assets with leverage.  

What drives this different result in our model compared to Sarkar and Zapatero (2003)? There are 

two important features of our model that differ compared to Sarkar and Zapatero model. Firstly, 

we use an AMR instead of a GMR process. In Sarkar and Zapatero (2003) volatility increases with 

earnings (due to the GMR process) which reduces leverage at high earnings. However, this effect 

is not present in our context since with an AMR the volatility of earnings remains the same 

irrespective of the earnings level.  Thus, in our model at high profitability levels the relative 

reduction in risk increases the tax benefits of debt and thus results in higher leverage. This effect 

is also present in Raymar (1991). However, Raymar (1991) focuses on short-term debt which 

exasperates the positive effect on leverage of an increase in profitability. Moreover, in Raymar 

(1991) default is exogenous, while we allow for endogenous default. Secondly, in comparison with 

Sarkar and Zapatero (2003), our model adds a growth option. We have investigated the relation 

between leverage and profitability assuming an AMR and no growth option. Online Appendix 

 
7 Equity value is not reported but can be calculated as the difference between firm value and debt value.  
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A.4.3.  shows that in the absence of a growth option the relation is negative for high x (i.e., the U-

shape is not present). Thus, the growth option is the main driver for the U-shape of leverage with 

profitability.8    

Panel A also shows that the investment trigger increases as x increases. However, investment is 

accelerated since the increase in the investment trigger is not as significant compared to the 

incremental increase in x. Indeed, the acceleration of investment can also be seen by the increase 

in the expected value of investment costs (Invb(x)) (see Panel B). In Panel A, we also find that 𝑥௕ 

increases with x while 𝑣௅ is slightly decreasing. These results are driven by firm’s choice relating 

to coupon levels 𝑅଴ and 𝑅ଵ . Indeed, 𝑅଴ is increasing whereas 𝑅ଵ is decreasing in relation with x.  

In Panel B, as expected, higher profitability increases firm and debt values and the net benefits of 

debt. When firms reach the investment trigger and there are no more growth options available the 

leverage ratio decreases with profitability, albeit slightly. We also observe that the change in the 

leverage ratio at this stage relative to the initial level follows an inverted U-shape. A higher-level 

x creates a slight U-shape for credit spreads at t = 0 which is like the one observed for leverage. At 

the investment trigger credit spreads decrease slightly (following a like the leverage pattern).  

We next discuss the impact of the growth option expansion factor and capital investment cost 

(results not tabulated for brevity). A higher growth expansion factor accelerates investment, delays 

default, and improves firm value. Despite the increase in the net benefits of debt, the leverage ratio 

at t = 0 decreases. This result agrees with the well-documented debt conservatism for firms with 

growth options (see Graham and Harvey, 2001).9 The negative relation between market leverage 

and growth options also holds in Hackbarth and Mauer (2012) who used a Geometric Brownian 

Motion for earnings when the second-best solution (like the one we apply in our model) is used.10 

On the other hand, we find that the leverage ratio increases with the expansion factor when firms 

 
8 As shown in Sarkar and Zapatero (2004) leverage does not vary with profitability for non-stationary firms when 
the firm does not have growth options.   
9 It should be noted that coupon levels increase at t = 0 but since the improvement in equity value is more significant 
than that of debt the leverage ratio decreases. Credit spreads at t = 0 do not show any notable increase which 
supports a debt “conservatism” argument.  
10 They document a U-shape for the first-best case, i.e., in the absence of agency conflicts. We do not analyze the 
first-best case in this paper since it reflects the hypothetical scenario with no conflicts of interest between debt and 
equity holders. This analysis would have been needed to measure agency costs, an issue we do not investigate in this 
paper.   Ogden and Wu (2013) show empirical evidence that the relation between leverage and growth options 
(market-to-book) is convex.    
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reach a stage where they exercise their investment growth options. There is also a more notable 

increase in credit spreads at this latter stage. Opposite directional effects to the one discussed above 

for the expansion factor are observed with respect to capital investment cost level (I).   

In Appendix A.4.1. we present sensitivity results with respect to the optimal priority rule. We find 

like in Hackbarth and Mauer (2012) that under a “me-first” priority rule for initial debt firm values 

are improved and that there is higher debt conservatism and underinvestment.   

3.2. Empirical predictions and hypotheses  

Table 4 summarizes the model predictions regarding firms with mean reversion in earnings aiming 

to provide guidance for empirical work in the area. In the next section we further facilitate this step 

by providing the framework for estimating the parameters of the continuous time process and 

provide empirical cross-sectional evidence for both firms with mean reverting and non-stationary 

earnings.  

[Insert Table 4 here] 

Initial financing (Levb) predictions reflect what one would expect to see in the cross section within 

a setting involving future growth option potential. For example, it is reasonable to expect a 

negative relation between market to book and leverage (as predicted at Levb) in the cross section 

than a positive one (as in LevT) which would only exist if growth options following an investment 

decision completely disappear.11  

We next summarize our main empirical hypothesis that are based on the predictions of our model 

with respect to leverage for mean reverting firms (see Levb in Table 4).  

H1: For mean reverting firms, the relation between market leverage during the timing of 

investment using debt financing in the presence of future growth options is negative with respect 

to volatility, positive with respect to mean reversion speed and long-term profitability, U-shaped 

with profitability and decreasing with the value of growth opportunities.  

 
11An addition of one more stage T+1 would imply that that firms’ decisions relating LevT would now consider the 
effect of future growth options and hence by backward induction a higher growth in a last stage would lead to a 
reduction in leverage at T. Hence we expect Levb to be representative of the prediction of the relation of leverage 
with other factors in the presence of future growth options.  
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Within a similar context, Hackbarth and Mauer (2012) developed a model for firms having non-

stationary earnings (GBM motion). Within our setting the non-stationary case reflects the case 

where the speed of mean reversion q tends to zero. We find that for non-stationary firms, the 

relation between market leverage during the timing of investment using debt financing in the 

presence of future growth options is negative with respect to volatility, U-shaped with profitability 

and decreasing with respect to the value of growth opportunities. These predictions are verified in 

sensitivity results we have conducted of the Hackbarth and Mauer (2012) setting. Indeed, our 

sensitivity analysis in Online Appendix section A.4.2 shows that a U-shape profitability-leverage 

relation holds also for firms following GBM in earnings firms. We have also conducted sensitivity 

approximating the non-stationary case within our context which can be obtained when q tends to 

zero verifying a similar U-shape exists within our setting for very low q.12 In sum, our analysis 

above clarifies that the predictions with respect to firms with non-stationary earnings are similar 

with those of firms with mean reversion. However, within the mean reversion sample we can also 

test the relation with estimated parameters relating long-term profitability and mean reversion 

speed.  

4. Empirical analysis 

4.1. Mean reversion process estimation and descriptive statistics for mean-reverting and 

non-stationary firms 

In this section we show how to estimate the parameters of the continuous time process. We also 

investigate the prevalence of earnings mean reversion and non-stationarity in the data and provide 

descriptive statistics for the two subsamples.  

The continuous time model dynamics for the earnings in equation (1) need to be translated in a 

suitable discrete time approximation for estimation. To do that we first note that the solution of the 

stochastic differential equation (SDE) in equation (1) is of the following form (see Lo and Wang, 

1995): 

 
12 Formally our case 𝑞 → 0 which define non-stationary firm does not nest the GBM motion. However, our 
qualitative (sign) empirical predictions of our case 𝑞 → 0 are the same as one would obtain with assumption a GBM 
motion process on earnings. It should also be noted that throughout our analysis we use the assumption of second-
best investment and financing of the growth option as discussed also in Hackbarth and Mauer (2012) because this is 
likely the case that holds in practice.   
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                                          𝑥௧ = 𝑥଴𝑒ି௤௧ + 𝜃(1 − 𝑒ି௤௧) + 𝜎 ∫ 𝑒௤(௦ି௧)𝑑𝑧௦
௧

଴
                           (21) 

The conditional expected value and variance of 𝑥௧ can be obtained by solving the Kolmogorov 

forward equation (as in Dixit and Pindyck, 1994, p.90). These moments have also been derived in 

Lo and Wang, (1995). The conditional expected value of earnings is: 

                                  𝐸(𝑥௧) = 𝑥଴𝑒ି௤௧ + 𝜃(1 − 𝑒ି௤ ) = 𝜃 + (𝑥଴ − 𝜃)𝑒ି௤௧                         (22) 

Note that for 𝑞 > 0 as 𝑡 → ∞, 𝐸(𝑥௧) → 𝜃 which confirms the mean-reverting nature of the process. 

The variance of the variable x is also obtained as follows: 

                                                  𝑉𝑎𝑟(𝑥௧) =
ఙమ

ଶ௤
(1 − 𝑒ିଶ௤௧)                                                   (23) 

Note that as t becomes large an increase in mean reversion speed q decreases the variance of x.  

The solution of the SDE implies the following discrete version of solution can be used to generate 

the dynamics of x (see Dixit and Pindyck, 1994, p.76, eq.19): 

                ∆𝑥௧ = 𝜃(1 − 𝑒ି௤) + (𝑒ି௤ − 1)𝑥௧ିଵ + 𝜎ට
ଵି௘షమ೜

ଶ௤
𝑍௧                                             (24) 

where 𝑍௧~𝑁(0,1). The above specification implies that the error volatility (we call “temporal 

variation”) per unit of interval is: 

                                                                          𝜎ఌ = 𝜎ට
ଵି௘షమ೜

ଶ௤
                                               (25)                            

Note that equation (24) can also be used to simulate the stochastic dynamics of the continuous 

process. To estimate the mean reversion speed (q), long-term mean (θ) and volatility (σ) in 

equation (24) we estimate the following AR (1) model in discrete time (see Dixit and Pindyck, 

1994, p.76): 

                                                                  ∆𝑥௧ = 𝑎 + 𝑏𝑥௧ିଵ + 𝜀௧                                              (26)                                  

We then associate the estimated constant, slope and error term volatility of eq. (26) with the 

continuous time model approximation analogue in equation (24) which results in the following 

solution for the parameters: 

                                                                   𝑞 = −ln (1 + 𝑏෠)                                                  (27)                              
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                                                                               𝜃 = −
௔ො

௕෠
                                                    (28)                                    

                                                                           𝜎 = 𝜎ఌට
ିଶ୪୬ (ଵା௕෠)

൫ଵା௕෠൯
మ

ିଵ
                                        (29)                          

For the dynamics above to be meaningful we need that −1 < 𝑏෠ < 0 so that we obtain a positive 

mean reversion speed. Note that the smaller the coefficient 𝑏෠  the larger the speed of mean 

reversion q while as 𝑏෠ → 0 we have 𝑞 → 0.  To avoid 𝑏෠ = 0 and ensure that earnings dynamics in 

eq. (26) remains stationary we employ an Augmented Dickey-Fuller. We estimate eq. (26) after 

first de-seasonalizing the earnings series and then used an Augmented Dickey-Fuller test to test 

the null of non-stationary series 𝑏෠=0 versus the alternative of stationary series 𝑏෠<0 using a 5% 

level of significance.  Note that 𝜎ఌ can be estimated using the standard error of regression of eq. 

(26). We use this as an input to estimate our first risk measure in eq. (29) which we subsequently 

refer as “risk1”. 𝜎ఌ can be used as an alternative measure of risk of temporal variation (we 

subsequently refer to this as “risk2”). We also use 𝜎ఌ  as a measure of risk for the firms found to 

be non-stationary. Volatility measures are then scaled with total assets since these estimates refer 

to the level of the earnings process.    

Our initial sample is from the quarterly COMPUSTAT database between 1961 and 2019. We 

exclude financial firms (Standard Industrial Classification (SIC) codes 6000 to 6999) and regulated 

firms (SIC codes 4900 to 4999). We require that a firm is included in the analysis for testing for 

mean reversion if it has at least 40 consecutive quarterly observations (10 year of data) for earnings 

(oibdpq).  

The total number of non-financial and non-regulated firms in the sample before and after the 

requirement of at least 40 consecutive observations is shown in Table 5. The table also shows the 

number of firms classified as mean reverting using the full sample available for each firm by 

applying the Augmented Dickey-Fuller to test the null of non-stationary series (based on 

estimating eq. 26).  

[Insert Table 5 here] 
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Figure 1 illustratively shows a selection of two firms from our sample, one found to be mean-

reverting and one which is non-stationary. Clearly, firm 1 earnings revert to a long-term mean 

whereas firm 2 appears not to revert to a long-term mean level.  

[Insert Figure 1 here] 

Using the Augmented Dickey-Fuller our analysis shows that 60% of the firms with available data 

are classified as mean reverting (stationary). Since very little is known about the long-term 

profitability, the mean reversion speed, and the volatility of earnings for firms following a mean 

reverting process, as well as their characteristics we first provide some descriptive statistics.  

Our sample is constructed by merging the COMPUSTAT financial data with CRSP. First, for our 

sample of mean reverting firms we create rolling estimates of long-term profitability, mean 

reversion speed and volatility for each additional available firm quarter observation setting forty 

consecutive observations as the minimum.13 We then merge the dataset based on the specific year-

quarter with CRSP monthly security prices based on the initial month of the same quarter. We 

calculate several variables including market leverage (gross, net and book), profitability (ROA), 

volatility scaled by assets, size (log sales), market to book, tangible assets, cash ratio, capital 

expenditure to assets and industry concentration based on Herfindahl index (see Danis et a., 2014 

and Eckbo and Kisser, 2021). After trimming the 1% lowest and highest values for variables to 

avoid outliers we are left with 1,683 unique mean reverting firms with complete data and a total 

of 41,067 firm-quarter year observations on these variables. We apply the same process for the 

sample of non-stationary firms, albeit we only now create rollover estimates of volatility based on 

the standard error of the regression in eq. (26).  This leaves us with a sample of 1,397 unique non-

stationary firms with complete data and a total of 38,368 firm-quarter year observations on all 

variables.14  

Table 6a provides information on the prevalence of earnings mean reversion in different industries.  

 
13 This induces some autocorrelation in the estimates. We have controlled for possible autocorrelation in the 
multivariate analysis in the standard error of estimates. We have also unreported results with a rolling window of 
five observations which provide similar insights as the one reported.  
14 We filter the 1% lowest and highest values for gross market leverage (total), net leverage total, book leverage, 
cash ratio, capital to assets (year-to-date), mean reversion speed, size, profitability, logarithm of volatility based on 
estimate of eq. (29) (for mean-reverting) or logarithm of the standard error from regression in eq. (26) (for non-
stationary), market-to-book, tangible assets, and long-term profitability. This process also ensures that leverage 
ratios and other ratios such as tangible assets remain within the unit interval.  
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[Insert Table 6a here] 

The data show that most mean reversion observations, with about 75% of our sample, belong to 

the manufacturing sector, followed by services with about 19% and retail trade with about 17%. 

The mining sector (a natural candidate for mean reversion) only comes fourth with about 12%. We 

find that mean reversion also exists in other sectors such as transportation, communications, 

electric, gas and sanitary service and wholesale trade (with about 11% and 6% respectively).   

Table 6b shows a similar breakdown for our sample of non-stationary firms. Similarly, most firm-

year quarter observations (albeit less compared to the mean reverting sample) of about 51% are in 

the manufacturing sector. Similarly with mean reverting sample this is followed by services with 

about 19%. About 15% of our sample of non-mean reverting are within the retail, mining, and 

wholesale trade sector (with about 5%-6% in each of these sectors respectively).  

Table 7a provides some further descriptive statistics for our sample of mean reverting firms while 

Table 7b provides descriptive statistics for non-stationary firms.  

[Insert Table 7a here] 

[Insert Table 7b here] 

Our sample of mean reverting firms has some different characteristics compared to a broader 

sample that includes all firms (both mean reverting and non-stationary). Although our sample 

covers a wider period compared to Danis et al. (2014) (see Table 1 of Danis et al., 2014, p.431), 

our median and mean reverting firm are more leveraged, of significantly smaller size based on 

log(sales) and with less growth potential based on market to book. However, mean reverting firms 

in our sample appear to have more tangible assets. This may reflect the fact that there is a large 

concentration of mean reverting firms in the manufacturing sector. We also find that our sample 

of mean reverting firms have more industry concentration compared to the overall sample of firms 

as shown in Danis et al. (2013). Finally, we note that the profitability exhibits a lower standard 

deviation for our sample of mean reverting firms. The descriptive statistics of our sample of non-

stationary firms (see Table 9b) confirms that the above differences between a sample of mean-

reverting and non-stationary firms hold also within our subsamples. This provides assurance that 

despite the restrictions that we have imposed for estimation of earnings process parameters, the 

samples remain representative of the overall populations for each category.  
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For our sample of mean reverting firms, we estimate two risk measures, one based on equation 

(29) (which uses regression eq. (26) standard error as input), and one based on temporal variation 

which is based on the standard error of model described in equation (26) scaled by assets. Both 

produce similar results with median volatility scaled by assets estimates of about 1.1%. In fact, we 

have also found that these two risk measures have a correlation of 97%. Our final two estimated 

variables in Table 7a present information about the estimates of long-term profitability and mean 

reversion speed. We find that mean and median long-term profitability to assets is close but slightly 

lower than the corresponding mean and median profitability (is about 2% of assets). The median 

mean reversion speed is high showing that most firms revert quickly to their long-term means. For 

non-stationary firms the only relevant stochastic process related variable is the one based on the 

standard error estimate of equation (26) (see Table 7b). We find that the risk based on this estimate 

has similar mean and median when scaled by total assets as the corresponding estimate for our 

sample of mean reverting firms.  

Table 8 presents median empirical estimates of our theoretical model parameters which have been 

defined relative to a normalized earnings level. We observe that empirically the median firm has 

a long-term profitability which is about 75% of earnings which explains why we have also focused 

our theoretical model sensitivity results on this case.  

[Insert Table 8 here] 

The median estimated volatility relative to the earnings level is about 39%  which is very close to 

our base case used in the theoretical analysis where volatility relative to normalized earnings was 

at 40%. Finally, the median mean empirical estimate of reversion speed is higher compared to 

what we used in our base case in our theoretical model sensitivity results. However, in our 

theoretical analysis we allowed for lower mean reversion speeds to investigate cases where growth 

options are not immediately exercised and thus we are able to provide insights relating to a 

combination of  high/low levels of mean reversion speed with high/low long-term profitability (see 

Table 2). 

4.2. Multivariate analysis  
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In this section we empirically investigate the relation between different factors affecting leverage 

for our sample of mean reversion firms and non-stationary firms. For the multivariate empirical 

tests, we run the following linear regression for mean reverting firms:  

𝐿௜,௧ = 𝑎 + 𝛾଴𝛱௜,௧ିଵ + 𝛾ଶ𝑅𝑖𝑠𝑘ఐ,௧ିଵ + 𝛾ଷ𝑀𝐵ఐ,௧ିଵ + 𝛾ଵ𝜃௜,௧ିଵ + 𝛾ଶ𝑞௜,௧ିଵ + 𝛽𝑋௜,௧ିଵ                     (30) 

where  𝐿௜,௧ denotes gross market leverage (using total debt), 𝛱௜,௧ିଵ is operating income after 

depreciation over total assets,  𝑅𝑖𝑠𝑘ఐ,௧ିଵ is the estimated measure of earnings risk (see eq. 29) 

scaled by total assets, 𝑀𝐵ఐ,௧ିଵ  is market-to-book, 𝜃௜,௧ିଵ denotes the estimated long-term 

profitability (see eq. 28)  scaled by total assets and 𝑞௜,௧ିଵ the estimated mean reversion speed (see 

eq. 27). 𝑋௜,௧ିଵ is a set of controls which includes size, tangible assets and Herfindahl industry 

concentration.  

For non-stationary firms we run a similar specification as in equation (30), albeit 𝑅𝑖𝑠𝑘ఐ,௧ିଵ is the 

estimated measure of earnings risk arising from the standard error of the regression eq. (26) scaled 

by total assets. In addition, we exclude  𝜃௜,௧ିଵ and 𝑞௜,௧ିଵ which is not applicable for non-stationary 

firms.  

Note that in contrast to Danis et. al. (2014) and Eckbo and Kisser (2021) we do not investigate 

refinancing events in this specification. The reason is twofold. First, our first goal is to see how 

our newly introduced variables based on the estimates of the stochastic process perform 

unconditionally to investment events. We also investigate how traditionally control variables (e.g., 

market-to-book and size) behave for our sub-samples of mean reverting and non-stationary firms. 

Secondly, and more importantly, Danis et. al. (2014) and Eckbo and Kisser (2021) focus on testing 

refinancing events. Our theoretical framework, on the other hand, focuses on adjustments in 

leverage during lumpy investment decisions. To confront our theoretical model with the data we 

will thus need to focus on investment related debt rebalancing events (we investigate this 

subsequently in the paper). 

Table 9 provides the results of empirically investigating the relation between factors affecting 

leverage by estimating eq. (30) above.  

[Insert Table 9 here] 
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In model (1) which focuses on mean-reverting firms, the results show that leverage is negatively 

associated with profitability, risk, and market-to-book (a proxy for growth options) and positively 

related to long-term profitability and mean reversion speed. Our results also show similarly to a 

sample which includes both mean reverting and non-stationary firms (see e.g., Danis et al. 2014, 

Table 2, p.433) that leverage is positively related to size and tangible assets. In contrast to Danis 

et al., (2014) we find Herfindahl industry concentration to negatively affect leverage.15  

Model (2) which focuses on the sample of non-stationary firms also shows that leverage is 

negatively associated with profitability. Interestingly, the negative effect appears even more 

pronounced. Leverage is also negatively associated with risk and market-to-book as expected. In 

addition, the size and tangible control variables appear with the expected sign. Herfindahl shows 

to be insignificantly associated with leverage.  

The previous analysis is unconditional on investment events with debt financing and thus is hard 

to identify which of the effects are caused by dynamic adjustments in leverage or simply due to 

firms’ inaction in frequently adjusting leverage. Thus, in contrast to Tserlukevich (2008) who 

focuses on inaction due to irreversible costs and investment options, our theoretical model predicts 

the relation of leverage and profitability at investment events involving debt financing should be 

U-shaped.  

In Table 10 we estimate model (30) now focusing only on investment events involving debt 

financing defined as firm-quarter periods where a firm’s year-to-date investment to assets ratio 

exceeds the 75% quartile year-to-date industry ratio and the long-term book debt ratio exceeds the 

75% quartile industry ratio in a given period.16 This leaves us with 3,225 investment events with 

debt financing for a sample of 518 firms for the mean reverting sample and 3,004 investment 

events with debt financing for 409 firms that are non-stationary. In order to investigate the U-shape 

relation of profitability with leverage the analysis now includes the square terms of profitability, 

as well as an interaction term of square profitability with market-to-book.    

 
15 We note that our industry concentration measure uses a two-digit SIC code whereas Danis et al. (2014) use a four-
digit SIC.  
16 We have considered alternative characterizations like for example focusing on comparison with median industry 
measures or comparing firms’ own median or 75% quartile investments and debt financing levels with similar 
results. Intuitively, our focus on high long-term ratios is in an attempt to better capture rebalancing of financing 
related to investment related financing.  
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[Insert Table 10 here] 

Two key findings from Table (10) are noted. First, we observe that there is a negative relation of 

profitability with leverage also during investment events. We find that this negative relation 

becomes more pronounced for high profitability levels as shown by the negative coefficient of the 

square term of profitability. Thus, we are unable to confirm a U-shape of profitability with 

leverage. However, our model predicts that the U-shape is driven by growth options. Indeed, we 

observe a positive sign of the interaction term of profitability with market-to-book which shows 

that the negative relation of profitability with leverage at high profitability levels is mitigated for 

firms with more valuable growth options. Purnanandam and Rajan (2018) analysis suggests that 

firms exercising their growth options translate growth options to assets in place which reduces 

leverage by also reducing the information asymmetry of equity. However, their study documents 

the negative relation of leverage with unexpected changes in capital expenditure not the leverage-

profitability relationship as studied here.     

 

Our results also show a consistent negative relation of market to book with leverage at investment 

points for both mean reverting and non-stationary firms. In addition for the sample of mean 

reverting firms the relation of long-term profitability and mean reversion speed with leverage is 

positive also at investment events (in line with H1). In terms of control variables, we find that 

tangible assets’ relation with leverage remains positive (as expected) and Herfindahl has negative 

sign as in the unconditional regression results with the effect however now being stronger for non-

stationary firms.  

Two effects do not align well with the theoretical trade-off model predictions. First, we notice that 

risk relations with leverage are not as expected. For non-stationary firms risk does not pick any 

statistical significance. On the other hand, the positive sign of risk on leverage at investment events 

for non-stationary firms is not expected by theoretical dynamic capital structure models (see also 

Hackbarth and Mauer (2012) and the summarized predictions in section 3.2.1.).   

Secondly, although the size variable is not directly related with our model predictions, we note the 

negative effect of size at investment events involving debt financing. Kurshev and Strebulaev 

(2015) attempt to disentangle the effect of size on leverage on theoretical grounds showing that 

size may be negatively related with leverage at rebalancing events due to less frequent and more 
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substantial debt adjustments of small firms. In our case, where size is measured as logarithm of 

sales, size may be capturing effects related to profitability. Indeed, firms wait until higher levels 

of profitability to trigger investment which should coincide with larger size (when size is measured 

with sales as here).  

Conclusion 

We develop a dynamic trade-off model with mean-reversion in earnings and dynamic leverage 

adjustments at investment points. We provide novel insights on the impact of earnings dynamics 

and in particular long-term profitability, mean reversion speed and volatility on firm value, 

leverage levels and dynamic changes in leverage and credit spreads. Our framework also provides 

various managerial implications regarding the optimal timing of investment and default decisions 

related to model parameters and the characteristics of the earnings process.  

Our empirical investigation shows that a large sample of US firms are characterized as mean 

reverting. We have provided descriptive statistics for both the sample of mean reverting firms and 

non-stationary firms and provide estimates of long-term profitability, mean reversion speed and 

volatilities for mean reverting firms and volatilities for non-stationary firms. Our multivariate 

analysis confirms a negative relation between our estimated volatility measure with leverage and 

a positive relation of leverage with long-term profitability and mean reversion speed. However, 

the relation of leverage with profitability is found negative both unconditionally as well as 

conditional on investment events for both mean reverting and non-stationary firms. Firms with 

growth options exhibit higher leverage at high profitability, however the negative relation of 

profitability with leverage is not fully reversed. Future work could further examine the dynamic 

capital structure decisions of mean reverting versus non-stationary firms in an attempt to further 

address the discrepancies between theoretical models and practice as discussed in Graham (2022). 

For example, one could investigate issues relating to how managerial conservatism affects firms’ 

leverage decisions.   
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Table 1. Sensitivity analysis with respect to mean reversion speed (q) 

Panel A: Optimal coupon and thresholds 

Base case (θ = 1) 

 

 

 

 

 

Case with lower long-term profitability (θ = 0.75) 

 

 

 

 

 

Panel B: Values at t = 0 

Base case (θ = 1) 

 Values at t = 0 Values at investment trigger T 
q Fb(x) Db(x) Ub(x) NBb(x) Levb Invb Crb LevT ΔLev CrT 

0.10 20.556 7.997 26.720 1.692 0.389 7.856 0.0050 0.485 0.096 0.0052 
0.15 20.771 10.486 27.234 2.174 0.505 8.637 0.0020 0.545   0.040 0.0020 
0.20 21.166 12.787 27.683 2.707 0.604 9.224 0.0010 0.628 0.024 0.0010 
0.25 21.524 14.526 28.019 3.139 0.675 9.634 0.0006 0.698 0.023 0.0006 
0.30 21.814 15.898 28.253 3.469 0.729 9.908 0.0004 0.752 0.023 0.0004 

Case with lower long-term profitability (θ = 0.75) 

  Values at t = 0 Values at investment trigger 
T 

q Fb(x) Db(x) Ub(x) NBb(x) Levb Invb Crb LevT ΔLev CrT 
0.1 16.063 5.239 21.488 1.167 0.326 6.591 0.0087 0.431 0.104 0.0089 

0.15 15.227 6.118 21.037 1.261 0.402 7.072 0.0037 0.440 0.038 0.0041 
0.2 14.954 7.448 20.950 1.573 0.498 7.568 0.0018 0.499 0.001 0.0019 

0.25 14.876 8.530 21.052 1.897 0.573 8.073 0.0010 0.569 -0.004 0.0010 
0.3 14.863 9.404 21.207 2.176 0.633 8.521 0.0006 0.633 0.001 0.0006 

 

 

q R0 R1 xI vL xb 
0.10 0.52 0.55 1.341 -1.501 -1.191 
0.15 0.65 0.45 1.238 -1.795 -1.209 
0.20 0.78 0.45 1.149 -1.810 -1.134 
0.25 0.88 0.47 1.077 -1.738 -1.053 
0.30 0.96 0.49 1.021 -1.623 -0.958 

q R0 R1 xI vL xb 
0.10 0.36 0.54 1.473 -1.356 -1.094 
0.15 0.39 0.4 1.409 -1.772 -1.186 
0.20 0.46 0.37 1.342 -1.947 -1.169 
0.25 0.52 0.39 1.276 -1.969 -1.137 
0.30 0.57 0.42 1.217 -1.910 -1.094 
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Notes: Initial earnings level x = 1, risk-free rate r = 0.06, tax rate τ = 0.15, proportional bankruptcy costs b = 0.5, 

growth option rate e = 2, investment cost I = 10. For the mean-reverting stochastic model parameters we use σ = 0.4, 

long-term mean θ = 1 or θ = 0.75 and vary mean reversion speed q. ΔLev stands for change in leverage and is calculated 

as LevT - Levb. Base case parameters highlighted in bold.  

 

Table 2. Sensitivity analysis with respect to long-term profitability (θ) 

Panel A: Optimal coupon and thresholds 

 

θ R0 R1 xI vL xb 
0.6 0.31 0.53 1.571 -1.217 -0.974 

0.75 0.36 0.54 1.473 -1.356 -1.094 
1 0.52 0.55 1.341 -1.501 -1.191 

1.25 0.73 0.58 1.237 -1.544 -1.234 
1.5 0.99 0.61 1.156 -1.504 -1.210 

1.75 1.29 0.63 1.093 -1.411 -1.132 
2 1.64 0.62 1.047 -1.282 -0.976 

2.25 2.03 0.57 1.017 -1.161 -0.764 
 

Panel B: Values at t = 0 

 Values at t = 0 
Values at investment 

trigger T 
θ Fb(x) Db(x) Ub(x) NBb(x) Levb Invb Crb LevT ΔLev CrT 

0.60 13.635 4.246 18.243 0.970 0.311 5.578 0.0130 0.405 0.094 0.0126 
0.75 16.063 5.238 21.488 1.167 0.326 6.591 0.0087 0.430 0.104 0.0090 

1 20.556 7.997 26.720 1.692 0.389 7.856 0.0050 0.485 0.096 0.0052 
1.25 25.429 11.561 31.741 2.396 0.455 8.708 0.0031 0.548 0.093 0.0032 
1.5 30.532 15.923 36.579 3.214 0.522 9.261 0.0022 0.611 0.089 0.0022 

1.75 35.763 20.952 41.283 4.093 0.586 9.613 0.0016 0.667 0.081 0.0016 
2 41.063 26.787 45.883 5.004 0.652 9.824 0.0012 0.716 0.064 0.0012 

2.25 46.398 33.325 50.414 5.928 0.718 9.944 0.0009 0.754 0.036 0.0009 
 

Notes: Initial earnings level x = 1, risk-free rate r = 0.06, tax rate τ = 0.15, proportional bankruptcy costs b = 0.5, 

growth option rate e = 2, investment cost I = 10. For the mean-reverting stochastic model parameters we use σ = 0.4, 

mean reversion speed q = 0.1 and vary long-term mean of earnings θ.  ΔLev stands for change in leverage and is 

calculated as LevT - Levb. Base case parameters highlighted in bold.  
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Table 3. Sensitivity analysis with respect to current profitability level (x) 

Panel A: Optimal coupon and thresholds 

 

x R0 R1 xI vL xb 
-0.40 0.30 0.8 1.323 -1.481 -1.660 
-0.25 0.32 0.8 1.324 -1.481 -1.616 

0 0.37 0.7 1.327 -1.481 -1.508 
0.25 0.41 0.7 1.330 -1.481 -1.422 
0.50 0.44 0.6 1.332 -1.481 -1.358 
0.75 0.48 0.6 1.336 -1.501 -1.274 

1 0.52 0.6 1.341 -1.501 -1.191 
1.25 0.59 0.5 1.352 -1.501 -1.049 
1.30 0.62 0.45 1.357 -1.501 -0.989 
1.35 0.68 0.4 1.369 -1.481 -0.873 

 

Panel B: Values at t = 0 

 

 Values at t = 0 
Values at investment 

trigger T 

x Fb(x) Db(x) Ub(x) NBb(x) Levb Invb Crb LevT ΔLev CrT 
-0.40 10.391 4.583 13.440 1.176 0.441 4.225 0.0055 0.492 0.051 0.0054 
-0.25 11.372 4.912 14.596 1.225 0.432 4.449 0.0051 0.491 0.059 0.0054 

0 13.039 5.688 16.576 1.318 0.436 4.855 0.0051 0.491 0.055 0.0053 
0.25 14.762 6.310 18.716 1.407 0.427 5.361 0.0050 0.491 0.064 0.0054 
0.50 16.563 6.780 21.069 1.493 0.409 6.000 0.0049 0.490 0.081 0.0053 
0.75 18.476 7.393 23.688 1.589 0.400 6.801 0.0049 0.486 0.086 0.0052 

1 20.556 7.997 26.720 1.692 0.389 7.856 0.0050 0.485 0.096 0.0052 
1.25 22.882 9.050 30.322 1.807 0.396 9.247 0.0052 0.484 0.088 0.0052 
1.30 23.389 9.509 31.118 1.832 0.407 9.561 0.0052 0.483 0.077 0.0052 
1.35 23.915 10.418 31.908 1.856 0.436 9.848 0.0053 0.485 0.050 0.0052 

 

Notes: Risk-free rate r = 0.06, tax rate τ = 0.15, proportional bankruptcy costs b = 0.5, growth option rate e = 2, 

investment cost I = 10. For the mean-reverting stochastic model parameters we use σ = 0.4, mean reversion speed q = 

0.1 and long-term mean of earnings θ = 1. ΔLev stands for change in leverage and is calculated as LevT - Levb. Base 

case parameters highlighted in bold.  
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Table 4. Summary of directional effects on firm value, firm investment and default policies 
and leverage dynamics 

 

Parameter 
Fb(x) xI vL xb Levb LevT ΔLev 

Volatility (σ) 1 U + - - - - + 

Speed of mean 
reversion (q)2  

 
 
 

U 

 
 
 

- 
 U U    + 

 
 
 

+ 
 

 
 
 
- 

Long-term profitability 
(θ) 

 
+ - U U + 

 
+ 

 
- 

Current earnings level 
(x) 

 
 

+ + - + U 

 
Moderate 

- 

 
Inverted 

U 
Growth expansion 

factor (e) 
 

+ - - - - 
 

+ 
 

+ 
Capital investment cost 

(I) 
 
- + + + + 

 
- 

 
- 

Me-first priority rule 
(compared with equal 

priority) 

 
 
 

+ - - - - 

Minor 
positive/No 
significant 

change 

 
 
 

+ 
Notes: The above table summarizes our sensitivity results. Note 1: the relation holds for “average” long-term 
profitability:  firm value is increasing when long-term profitability is low and decreasing when long-term 
profitability is high. All other effects of volatility remain unchanged.  Note 2: When long-term profitability is low 
(high) firm value is decreasing (increasing).  
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Table 5. Sample of mean reverting and non-stationary firms.  

All COMPUSTAT firms including financial 

and regulated 

38,205 

Financial firms  11,053 

Regulated    929 

Total non-financial and non-regulated firms 26,223 

Number of firms with N = 40 consecutive 

earnings (oibdpq) 

5,321 

N. of firms classified as mean reverting  3,197 

N. of unique mean reverting firms with 

complete observations on all variables (with 

1% highest and lowest outliers removed) 

1,683 

Total number of firm-quarter year 

observation with full data for mean 

reverting firms 

41,067 

N. of unique non-mean reverting firms with 

complete observations on all variables (with 

1% highest and lowest outliers removed) 

1,397 

Total number of firm-quarter year 

observation with full data for non-mean 

reverting firms 

38,368 
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Table 6a. Industry classification of mean reverting firms 

SIC Division 
Firms-

Yeas obs. 
Perc. 

0100-0999 Agriculture, Forestry and Fishing 286 1.00% 

1000-1499 Mining 3532 12.38% 

1500-1799 Construction 618 2.17% 

2000-3999 Manufacturing 21392 74.97% 

4000-4999 
Transportation, Communications, 
Electric, Gas and Sanitary service 

3122 10.94% 

5000-5199 Wholesale Trade 1811 6.35% 

5200-5999 Retail Trade 4829 16.92% 

7000-8999 Services 5393 18.90% 

9900-9999 Nonclassifiable 84 0.29% 

  Total 41,067 100% 
 

Table 6b. Industry classification of non-mean reverting firms 

Division 
Firms-Yeas 

obs 
Perc. 

Agriculture, Forestry and Fishing 64 0.17% 

Mining 2201 5.74% 

Construction 541 1.41% 

Manufacturing 19540 50.93% 

Transportation, Communications, Electric, Gas and Sanitary 
service 

4687 12.22% 

Wholesale Trade 1835 4.78% 

Retail Trade 2072 5.40% 

Services 7340 19.13% 

Nonclassifiable 88 0.23% 

Total 38,368 100% 

Notes: The table provides the industry (SIC) classification of all non-financial, non-regulated firms with at least 40 
consecutive earnings (oibdpq) which are classified as either mean reverting or non-mean reverting (non-stationary) 
and have complete data on a set of variables needed for the analysis (see Table 5).  
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Table 7a. Descriptive statistics for sample of mean reverting firms 

 Mean Median Std 

Market Leverage (gross)- Total 0.287 0.235 0.224 
Market Leverage (gross)- LT debt 0.247 0.191 0.220 
Market Leverage (Net) -Total 0.178 0.170 0.334 
Book leverage -Total 0.262 0.237 0.181 
Book leverage- LT debt  0.216 0.189 0.175 
Profitability (ROA) 0.025 0.027 0.030 
Risk1 (Sigma to assets) 0.017 0.011 0.024 
Risk2(Temporal variation to asset) 0.017 0.011 0.020 
Size (Log of sales) -1.180 -1.172 2.005 
Market to book 1.152 0.930 0.800 
Tangible assets 0.336 0.276 0.242 
Herfindahl index 0.293 0.238 0.197 
Cash ratio 0.107 0.062 0.124 
Capex to assets (year-to-date) 0.034 0.021 0.038 
Capex to assets (quarterly) 0.000 0.006 0.040 
LT profitability to assets 0.020 0.021 0.019 
Mean reversion speed (q) 0.726 0.517 0.637 

 

Table 7b. Descriptive statistics for sample of non-mean reverting firms 

  Mean Median Std 

Market  Leverage (gross)- Total 0.240 0.182 0.208 

Market  Leverage (gross)- LT debt 0.221 0.162 0.205 

Market Leverage (Net) -Total 0.163 0.128 0.261 
Book leverage -Total 0.276 0.256 0.184 
Book leverage- LT debt  0.244 0.223 0.180 
Profitability (ROA) 0.037 0.036 0.024 

Risk2( Temporal variation to asset) 0.007 0.005 0.009 
Size (Log of sales) -0.304 -0.266 1.659 
Market to book 1.599 1.287 1.095 
Tangible assets 0.314 0.237 0.243 
Herfindahl index 0.281 0.203 0.215 
Cash ratio 0.113 0.066 0.130 
Capex to assets (year to date) 0.034 0.021 0.036 
Capex to assets (quarterly) 0.000 0.006 0.036 
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Notes: The table provides descriptive statistics of all non-financial, non-regulated firms with at least 40 consecutive 
earnings (oibdpq) which are either mean reverting or non-stationary and have complete data on a set of variables 
needed for the analysis (see Table 7). Gross market leverage defined as long-term debt plus short-term debt divided 
long-term debt plus short-term debt plus the market value of equity, with market value of equity calculated using 
CRSP data (dlttq+dlcq)/ (dlttq+dlcq+price x shrout) while gross LT leverage excludes short-term debt. Net leverage 
total is defined as book debt net of cash holdings (dlttq+dlcq -cheq) divided by the sum of book debt net of cash and 
market equity.  Profitability is defined as operating income after depreciation over total asset (oibdpq/atq). Book 
leverage is defined as book debt scaled by total assets while book LT debt excludes short-term debt. Size is the 
inflation adjusted log of sales (log(salesq/cpiind)). Risk1 is defined as the rollover estimate of volatility as defined in 
eq. (29) scaled by total assets of the year-quarter. Risk2 is defined as the rollover estimate of volatility of the 
standard error of eq. (26) scaled by total assets of the year-quarter. Market-to-book is the market value of equity plus 
long-term debt divided by total assets ((equity+dlttq)/atq). Tangible assets are property plant and equipment over 
total assets (ppentq/atq). Herfindahl index a particular industry is defined as the sum of squared market shares for all 
firms in a two-digit SIC industry in a year-quarter. The market share of a firm is defined as sales of that firm in a 
year-quarter divided by the total sales in the industry of firm in that year-quarter. Cash ratio is cash and equivalents 
(cheq) scaled by total assets. Capex to assets is (capex) scaled by total assets (year-to-date or quarterly). LT profit to 
asset is rollover estimated long-term profit of a firm in a year-quarter as defined in eq. (28) divided by total assets of 
the corresponding year-quarter. Mean reversion speed is the rollover estimated mean reversion speed as defined in 
eq. (27) in a year-quarter scaled by total assets.   

 

 

Table 8.   Empirical estimates of theoretical model parameters of mean reverting process  

  Median 

LT profitability to earnings (θ/x) 0.75 

Volatility (sigma) to earnings (σ/x) 0.39 

Mean reversion speed (q) 0.52 
 

Notes: The table provides the implied theoretical model parameters arising from empirical median sample estimates.  
Long -term profitability to earnings (θ/x) is the median sample estimate of long-term profitability to assets (see Table 
9a) divided by the median sample estimate of profitability (from Table 7a). Similarly, volatility (sigma) to earnings 
(σ/x) is the median sample estimate of long-term sigma to assets (see Table 7a) divided by the median sample estimate 
of profitability (from Table 7a).  Mean reversion speed (q) is the median estimate of mean reversion speed obtained 
from Table 9a.
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Table 9. Factors affecting leverage for mean reverting firms 

  
Mean 

reverting 
  Non-

stationary 
  

  (1)   (2)   

Profitability -1.115 *** -1.431 *** 
 (0.049)  (0.057)  
Risk -0.583 *** -0.733 *** 
 (0.077)  (0.125)  
Market-to-book -0.107 *** -0.076 *** 
 (0.002)  (0.001)  
LT profit to assets 0.155 *   
 (0.086)  

  
Mean reversion speed  0.037 ***  

 
 (0.002)    
Controls:   

   
Size 0.011 *** 0.008 *** 
 (0.001)  (0.001)  
Tangible  0.149 *** 0.153 *** 
 (0.009)  (0.01)  
Herfindahl -0.051 *** -0.018  
 (0.01)  (0.012)  
  

   
Quarter FE Yes  Yes  
Industry FE Yes  Yes  
R2 0.345  0.43  
Adj. R2 0.341  0.427  
Firm obs. 1,683  1,397  
Total obs. 41,067  38,368  
F-test (Prob) <0.0001  <0.0001  

 

Notes: The analysis is based on all non-financial, non-regulated firms with at least 40 consecutive earnings (oibdpq) 
which are mean reverting (see Table 7). The dependent variable is gross market leverage defined as long-term debt 
plus short-term debt divided long-term debt plus short-term debt plus the market value of equity, with market value 
of equity calculated using CRSP data (dlttq+dlcq)/ (dlttq+dlcq+price x shrout). Profitability is defined as operating 
income after depreciation over total asset (oibdpq/atq). Size is the inflation adjusted log of sales (log(salesq/cpiind)). 
Risk is defined as the rollover estimate of volatility as defined in eq. (29) scaled by total assets of the year-quarter 
(Risk1) for mean reverting firms and the standard error of regression in equation (26) scaled by total assets for non-
stationary firms. Market-to-book is the market value of equity plus long-term debt divided by total assets 
((equity+dlttq)/atq). Tangible assets are property plant and equipment over total assets (ppentq/atq). Herfindahl index 
a particular industry is defined as the sum of squared market shares for all firms in a two-digit SIC industry in a year-
quarter. The market share of a firm is defined as sales of that firm in a year-quarter divided by the total sales in the 
industry of firm in that year-quarter. LT profit to asset is rollover estimated long-term profit of a firm in a year-quarter 
as defined in eq. (28) divided by total assets of the corresponding year-quarter. Mean reversion speed is the rollover 
estimated mean reversion speed as defined in eq. (27) in a year-quarter scaled by total assets.  The symbols *, **, and 
**** refer to estimates significantly different from zero at 10%, 5% and 1% confidence level, respectively. 
Heteroskedastic and autocorrelation robust standard errors clustered at firm level are provided in parenthesis.
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 Table 10. Factors affecting leverage at investment events with debt financing 

 

  Mean reverting   
Non-

stationary 
  

  (1)   (2)   

Profitability -1.396 *** -0.584 *** 
 (0.234)  (0.208)  

Risk -0.129  2.887 ** 
 (0.354)  (1.289)  

Market-to-book -0.174 *** -0.104 *** 
 (0.014)  (0.011)  

Profitability squared -25.767  -28.313 *** 
 (5.120)  (4.628)  
Profitability squared x Market-

to-book 12.925  8.995 
*** 

 (2.782)  (1.749)  
LT profit to assets 1.354 ***  

 
 (0.317)  

 
 

Mean reversion speed  0.036 ***  
 

 (0.009)  
 

 
Controls:   

   
Size -0.007 *** -0.008 ** 

 (0.003)  (0.003)  
Tangible  0.114 *** 0.277 *** 

 (0.028)  (0.031)  

Herfindahl -0.044  -0.248 *** 
 (0.030)  (0.039)  
     

Quarter FE Yes  Yes  

Industry FE Yes  Yes  

R2 0.59  0.65  
Adj. R2 0.54  0.62  

Firm obs. 518  409  
Total obs. 3,225  3,004  

F-test (Prob) <0.0001  <0.0001  
 

Notes: The analysis is based on all non-financial, non-regulated firms with at least 40 consecutive earnings (oibdpq) 
which are mean reverting (see Table 7). All variables are defined in the note of Table 9. The analysis focuses on 
investment events defined as firm-quarter periods where a firm’s year-to-date investment to assets ratio exceeds the 
75% year-to-date quartile industry ratio and the long-term book debt ratio exceeds the 75% quartile industry ratio in 
that period. The symbols *, **, and **** refer to estimates significantly different from zero at 10%, 5% and 1% 
confidence level, respectively. Heteroskedastic and autocorrelation robust standard errors clustered at firm level are 
provided in parenthesis.  
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Table A1. Sensitivity analysis with respect to earnings volatility (σ) 

Panel A: Optimal coupon and thresholds 

 

 

 

 

 

Panel B: Values at t = 0 and the investment trigger T 

 Values at t = 0 
Values at investment 

trigger T 
σ Fb(x) Db(x) Ub(x) NBb(x) Levb Invb Crb LevT ΔLev CrT 

0.24 20.822 11.644 28.187 2.475 0.559 9.840 0.0018 0.616 0.057 0.0018 
0.30 20.580 9.711 27.373 2.080 0.472 8.873 0.0028 0.553 0.081 0.0028 
0.40 20.556 7.997 26.720 1.692 0.389 7.856 0.0050 0.485 0.096 0.0052 
0.50 20.815 6.778 26.551 1.532 0.326 7.268 0.0079 0.450 0.124 0.0082 

 

 Notes:  Initial earning level x = 1, risk-free rate r = 0.06, tax rate τ = 0.15, proportional bankruptcy costs b = 0.5, 

growth rate parameter e = 2, investment cost I = 10. For the mean-reverting stochastic model parameters we vary σ 

and use a mean reversion speed q = 0.1 and long-term mean of earnings θ = 1.  ΔLev stands for change in leverage 

and is calculated as LevT - Levb. Base case parameters are highlighted in bold.  

  

σ R0 R1 xI vL xb 

0.24 0.72 0.46 1.015 -0.658 -0.415 
0.30 0.61 0.5 1.135 -1.028 -0.772 
0.40 0.52 0.55 1.341 -1.501 -1.191 
0.50 0.46 0.64 1.541 -1.856 -1.563 
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Table A2. Sensitivity with respect to priority rule: “me-first” priority for initial debt with 
sensitivity with respect to volatility 

Panel A: Optimal coupon and thresholds 

 

 

 

 

 

Panel B: Values at t = 0 and the investment trigger T 

 
Values at t = 0 Values at investment 

trigger T 
σ Fb(x) Db(x) Ub(x) NBb(x) Levb Invb Crb LevT ΔLev CrT 

0.23 20.888 11.166 28.273 2.551 0.535 9.935 0.0009 0.624 0.090 0.0016 
0.30 20.585 9.417 27.161 2.068 0.457 8.644 0.0016 0.552 0.095 0.0029 
0.40 20.562 7.924 26.469 1.679 0.385 7.586 0.0031 0.487 0.102 0.0052 
0.50 20.823 6.899 26.290 1.521 0.331 6.989 0.0052 0.451 0.119 0.0082 

 

Notes: In the above sensitivity the following was used: initial earnings level x = 1, risk-free rate of r = 0.06, tax rate τ 

= 0.15 and proportional bankruptcy costs b = 0.5. For modelling the growth option, we use e = 2, investment cost I = 

10. For the mean-reverting stochastic model parameters we vary σ, use a mean reversion speed q = 0.1 and long-term 

mean of earnings θ = 1.  ΔLev stands for change in leverage and is calculated as LevT - Levb. Base case parameters 

highlighted in bold. In this sensitivity results we use “me-first” priority for first debt (see equations 10a and 10b).  

  

σ R0 R1 xI vL xb 

0.23 0.68 0.51 1.006 -0.601 -0.471 
0.30 0.58 0.54 1.163 -1.007 -0.825 
0.40 0.5 0.59 1.386 -1.461 -1.218 
0.50 0.45 0.67 1.599 -1.818 -1.565 
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Table A3. Sensitivity with respect to x for the model in the absence of growth option 

x xL xA R Fb(x) Db(x) Levb 
0.5 -0.990 -1.950 0.42 12.241 6.412 0.524 
1 -0.843 -1.950 0.49 15.023 7.517 0.500 

1.5 -0.700 -1.950 0.56 17.785 8.585 0.483 
2 -0.601 -1.950 0.61 20.534 9.372 0.456 

2.5 -0.504 -1.950 0.66 23.270 10.139 0.436 
3 -0.409 -1.950 0.71 25.998 10.889 0.419 

3.5 -0.335 -1.950 0.75 28.720 11.501 0.400 
4 -0.262 -1.950 0.79 31.437 12.103 0.385 

4.5 -0.190 -1.950 0.83 34.149 12.698 0.372 
5 -0.120 -1.950 0.87 36.859 13.287 0.360 

5.5 -0.051 -1.950 0.91 39.566 13.871 0.351 
6.5 0.083 -1.950 0.99 44.974 15.025 0.334 

Notes: Risk-free rate r = 0.06, tax rate τ = 0.15, proportional bankruptcy costs b = 0.5. For the mean-reverting 

stochastic model parameters we use σ = 0.4, mean reversion speed q = 0.1 and long-term mean of earnings θ = 1. Levb 

is calculated as Db(x)/ Fb(x).  
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Figure 1. Examples of classifications of earnings processes

 

Notes:  Plot 1 shows an example of a mean reverting process. It refers to firm “AM COMMUNICATIONS INC” 

with CUSIP number 001674100 with estimated mean reversion parameters θ = 0, q = 1.97 and σ = 0.69. Plot 2 

shows an example of a firm found to be non-stationary (“ABS INDUSTRIES INC” with CUSIP = 000781104). 

Both plots show their earnings (oibdpq) unadjusted for seasonality for the whole periods of consecutive available 

data for each firm.  
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Figure A1. Robustness of U-shape of profitability with leverage in AMR mean reversion 

setting and also for non-stationary earnings (GBM) 

 

Notes: For the mean reverting cases “low theta” and “low q” we use risk-free rate r = 0.06, tax rate τ = 0.15, 

proportional bankruptcy costs b = 0.5, growth option rate e = 2, investment cost I = 10, σ = 0.4. For the “low theta” 

case we use mean reversion speed q = 0.1 and long-term mean of earnings θ = 0.75. For the “low q” case we use q = 

0.075 and long-term mean of earnings θ = 1. For the GBM case we implement Hackbarth and Mauer (2012) with 

parameters (using the notation of our paper) r = 0.06, δ = 0.05, tax rate τ = 0.15, proportional bankruptcy costs b = 

0.5, growth option rate e = 1.6, investment cost I = 10, σ = 0.25.  
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Appendix 1. Definition of variables of the theoretical model 

𝐸𝑏(𝑥) = Equity before investment (equity in stage 1). 

𝐹𝑏(𝑥) = Firm value before investment. 

𝑈𝑏(𝑥) = Value of unlevered assets before investment. 

𝑇𝐵𝑏(𝑥) = Tax benefits before investment. 

𝐵𝐶𝑏(𝑥) = Bankruptcy costs before investment. 

𝐷𝑏(𝑥) = Debt before investment. 

𝑅଴= Coupon for 𝐷𝑏(𝑥). 

𝑥௕ = Bankruptcy threshold before investment. 

𝑥ூ = Investment trigger  

𝐸𝑎(𝑥) = Equity after investment (equity in stage 2). 

𝐹𝑎(𝑥) = Firm value after investment. 

𝑈𝑎(𝑥) = Value of unlevered assets after Investment. 

𝑇𝐵𝑎(𝑥) = Tax Benefits after Investment. 

𝐵𝐶𝑎(𝑥) = Bankruptcy costs after Investment. 

𝐷𝑎଴(𝑥) = Debt value of debt obtained at time zero after investment. 

𝐷𝑎ଵ(𝑥) = Debt value of debt obtained at the investment trigger after investment. 

𝑅ଵ= Coupon for 𝐷𝑎ଵ(𝑥). 

𝑥௅ = Bankruptcy threshold following investment (in stage 2). 

𝜏 = Corporate tax rate 

𝑏 = Proportional to unlevered assets bankruptcy costs  

𝛽଴ = share of initial debt holders at bankruptcy in stage 2 under equal priority. 
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𝛽ଵ =  share of second debt holders at bankruptcy in stage 2 under equal priority. 

I = Investment cost 

RT = R0+R1 

Levb = 𝐷𝑏(𝑥) / 𝐹𝑏(𝑥): Leverage ratio at t = 0 

Crb = R0/ 𝐷𝑏(𝑥)-r: Credit spread of initial debt at t = 0 

Invb = I  ∙  J(x) = Expected present value of investment costs 

NBb(x) = 𝑇𝐵𝑏(𝑥)- 𝐵𝐶𝑏(𝑥) : Net benefits of debt 

At the investment trigger: 

LevT = (𝐷𝑎଴(𝑥)+𝐷𝑎ଵ(𝑥)) / 𝐹𝑎(𝑥): Total leverage ratio at the investment trigger  

ΔLev = LevT-Levb  : Change in leverage relative to initial stage 

Crb=R0/𝐷𝑎଴(𝑥)-r: Credit spread of initial debt at the investment trigger  

CrT= (R0 +R1)/ (𝐷𝑎଴(𝑥) + 𝐷𝑎ଵ(𝑥))-r:   Credit spread of total debt at the investment trigger  
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Online Appendices 

Appendix 1: Derivation of the homogeneous differential equation solution  

Following standard replication arguments (example, Dixit and Pindyck, 1994, p.180) any 

contingent claim 𝑃(𝑥) on an underlying asset x that follows the mean reversion process defined 

in equation (1) should satisfy17:  

         𝑇(𝑃(𝑥)) =
ଵ

ଶ
𝜎ଶ𝑃ᇱᇱ(𝑥) − 𝑞(𝑥 − 𝜃)𝑃ᇱ(𝑥) − 𝑟𝑃(𝑥) = 0,     𝑥 ∈ ℜ                          (A1) 

To find the general solution of this homogeneous differential equation first set 𝜎ത = 𝜎/ඥ2𝑞 and 

make the following change of variables: 

𝑧 =
𝑥 − 𝜃

𝜎ത
. 

Then 𝑃(𝑥) = 𝑢(𝑧),   𝑃ᇱ(𝑥) =  
ଵ

ఙഥ
 𝑢′(𝑧) and   𝑃ᇱᇱ(𝑥) =  

ଵ

ఙഥమതതതത  𝑢′′(𝑧). Thus equation (A1) is 

transformed to: 

                                    𝑞 𝑢ᇱᇱ(𝑧) − 𝑞𝑧 𝑢ᇱ(𝑧) − 𝑟𝑢(𝑧) = 0,     𝑧 ∈ ℜ.                                 (A2) 

Setting also 𝑢(𝑧) = 𝑤(𝑧)𝑒
೥మ

ర , with 𝜈 = −
௥

௤
< 0, deduce that 𝑢ᇱ(𝑧) = 𝑒

೥మ

ర ቀ𝑤′(𝑧) + 𝑤(𝑧)
௭

ଶ
ቁ and 

𝑢ᇱᇱ(𝑧) = 𝑒
೥మ

ర ቀ𝑤ᇱᇱ(𝑧) + 𝑧𝑤ᇱ(𝑧) + 𝑤(𝑧)
ଵ

ଶ
(1 +

௭మ

ଶ
)ቁ. A simple calculation then shows that 

equation (A2) can be rewritten into:  

                                   𝑤ᇱᇱ(𝑧) − ቂ
ଵ

ସ
𝑧ଶ − ቀ𝜈 +

ଵ

ଶ
ቁቃ 𝑤(𝑧) = 0,     𝑧 ∈ ℜ.                             (A3) 

Equation (A3) is the real version of Weber’s equation (Abramowitz and Stegun, 1972), that is: 

                              𝑤ᇱᇱ(𝑧) − ቂ
ଵ

ସ
𝑧ଶ + 𝑎ቃ 𝑤(𝑧) = 0,     𝑧 ∈ ℂ,                                             (A4) 

where 𝑎 = −𝜈 −
ଵ

ଶ
. The general solution of equation (A3) is given by: 

 
17 To derive this general contingent claim differential equation, we assume risk-neutral investors and hence that the 
total required return on holding an asset in equilibrium is r = a(x)+δ where a(x)=q(θ-x) is the capital (gain) of asset x 
and δ the convenience yield. Thus, the implied convenience yield of holding the underlying asset x is δ = r-a(x). A 
similar approach is followed in Sarkar and Zapatero (2003).  
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                                    𝑤௚(𝑧) = 𝐶ଵ𝑈(𝑎, 𝑧) + 𝐶ଶ𝑈(𝑎, −𝑧).                                                (A5)   

With 𝐶ଵ and 𝐶ଶ general constants and where: 

𝑈(𝑎, 𝑧) =
1

2క√𝜋
൤cos(𝜉𝜋) Γ ൬

1

2
− ξ൰ 𝑦ଵ(𝑎, 𝑧) − √2 sin(𝜉𝜋) Γ(1 − ξ) 𝑦ଶ(𝑎, 𝑧)൨      (A6) 

with 

𝜉 =
1

2
𝑎 +

1

4
 , 

                                      𝑦ଵ(𝑎, 𝑧) = 𝑒ି 
೥మ

ర   𝐹ଵଵ ቀ
ଵ

ଶ
𝑎 +

ଵ

ସ
;  

ଵ

ଶ
;  

௭మ

ଶ
ቁ                                      (A7) 

and  

                                  𝑦ଶ(𝑎, 𝑧) = 𝑧 𝑒ି 
೥మ

ర   𝐹ଵଵ ቀ
ଵ

ଶ
𝑎 +

ଷ

ସ
;  

ଷ

ଶ
;  

௭మ

ଶ
ቁ                                       (A8) 

where 𝐹ଵଵ (𝛼; 𝛽; 𝑧) = 𝑀(𝛼; 𝛽; 𝑧) is the confluent hypergeometric function (see Buchholz, 

1969, Borodin and Salminen, 2002). 

For the sake of being in the same line of notation with the literature concerning the limits of 

functions subsequently used we name 𝐷ఔ(𝑧) = 𝑈(𝑎, 𝑧). Thus, focusing on the real solutions, the 

general solution (A5) can be re-written as: 

                    

                                    𝑤௚(𝑧) = 𝐶ଵ𝐷ఔ(𝑧) + 𝐶ଶ𝐷ఔ(−𝑧)               𝑧 ∈ ℜ.                             (A9) 

Two useful asymptotic properties of the two linear independent solutions of equation (A3) 

(Abramowitz and Stegun (1972), equations 19.3.1 and 19.3.2, p.687, combined with equations 

19.8.1 and 19.8.2, p.689) are the following:   

                               lim
௭→ஶ

𝑒
೥మ

ర  𝐷ఔ(𝑧)  =  lim
௭→ஶ

   𝑧ఔ(1 + 𝑂(𝑧ିଶ) = 0,     𝑓𝑜𝑟  𝜈 < 0           (A10) 

and  

                                            lim
௭→ஶ

𝑒
೥మ

ర  𝐷ఔ(−𝑧) ~ 
√ଶగ

୻(ିఔ)
   lim

௭→ஶ
  𝑒

೥మ

మ   𝑧ିఔିଵ = ∞.               (A11) 
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Since we have used the transformation 𝑢(𝑧) = 𝑤(𝑧)𝑒
೥మ

ర  we can now move back to get the 

general solution of equation (A2) to be: 

𝑢௚(𝑧) = 𝐶ଵ 𝑒
௭మ

ସ  𝐷ఔ(𝑧) + 𝐶ଶ 𝑒
௭మ

ସ  𝐷ఔ(−𝑧),       𝑧 ∈ ℜ.    

Thus, we deduce that the solution of equation (A1) expressed in terms of x is given by: 

𝑃(𝑥) = 𝐶ଵ 𝑒
భ

ర
൬

(ೣషഇ)ඥమ೜

഑
൰

మ

 𝐷ఔ ൬
(௫ିఏ)ඥଶ௤

ఙ
൰ + 𝐶ଶ𝑒

భ

ర
൬

(ೣషഇ)ඥమ೜

഑
൰

మ

 𝐷ఔ ൬−
(௫ିఏ)ඥଶ௤

ఙ
൰ , 𝑥 ∈ ℜ.      (A12) 

For simplicity of presentation denote the general solution of (A1) as 

                                                     𝑃(𝑥) = 𝐶ଵ𝑃ଵ(𝑥) + 𝐶ଶ𝑃ଶ(𝑥),                                     (A13a) 

with  

𝑃ଵ(𝑥) =  𝑒
ଵ
ସ

ቆ
(௫ିఏ)ඥଶ௤

ఙ
ቇ

మ

 𝐷ఔ ቆ
(𝑥 − 𝜃)ඥ2𝑞

𝜎
ቇ, 

and 

𝑃ଶ(𝑥) = 𝑒
ଵ
ସ

ቆ
(௫ିఏ)ඥଶ௤

ఙ
ቇ

మ

 𝐷ఔ ቆ−
(𝑥 − 𝜃)ඥ2𝑞

𝜎
ቇ, 

with equations (A10) and (A11) giving that: 

lim
௫→ஶ

𝑃ଵ(𝑥) = 0     (A13b) 

lim
௫→ିஶ

𝑃ଵ(𝑥) = ∞    (A13c) 

lim
௫→ஶ

𝑃ଶ(𝑥) = ∞    (A13d) 

lim
௫→ିஶ

𝑃ଶ(𝑥) = 0    (A13e) 

 

Appendix 2: Derivation of solution for basic and general claims involving two boundaries 

A2.1.Basic claim paying one dollar at 𝑣௅ after investment 
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Consider the following differential equation problem: 

                                               𝑇∗൫𝑄(𝑣)൯ = 0,     𝑣 ∈ ℜ                                    (A14) 

lim
௩→ஶ

𝑄(𝑣) = 0 

𝑄(𝑣௅) = 1 

where 𝑇∗(𝜃∗, 𝜎∗) ≡ 𝑇(𝑒𝜃, 𝑒𝜎).  The solution for 𝑄(𝑣) is given by applying (A13a): 

𝑄(𝑣) = 𝐶ଵ𝑃ଵ(𝑣) + 𝐶ଶ𝑃ଶ(𝑣) 

Applying the first boundary condition in (A14) combined with equation (A13d) gives 𝐶ଶ = 0. 

Then the second boundary condition gives 𝐶ଵ =
ଵ

௉భ(௩ಽ)
  . Thus, the solution for this basic claim 

paying one dollar at  𝑣௅ after investment is:                 

                                            𝑄(𝑣) =
௉భ(௩)

௉భ(௩ಽ)
                                                                         (A15) 

A2.2. Basic claims for homogeneous equations before investment 

𝐽(𝑥) and 𝐿(𝑥) are basic claims where 𝐽(𝑥) pays one dollar at 𝑥ூ and zero when 𝑥௕ is reached and 

𝐿(𝑥) pays one dollar at  𝑥௕ and zero when  𝑥ூ is reached.  

A. Derivation of 𝐽(𝑥) 

Consider the following differential equation problem: 

 

                                               𝑇൫𝐽(𝑥)൯ = 0,     𝑥 ∈ ℜ                                            (A16) 

𝐽(𝑥ூ) = 1 

𝐽(𝑥௕) = 0 

The solution 𝐽(𝑥) satisfies (A13) hence: 

 

𝐽(𝑥) = 𝐶ଵ𝑃ଵ(𝑥) + 𝐶ଶ𝑃ଶ(𝑥) 

Applying the boundary conditions in (A16) results in:  

𝐶ଵ =
𝑃ଶ(𝑥௕)

𝐷(𝑥ூ , 𝑥௕)
 ,          𝐶ଶ = −

𝑃ଵ(𝑥௕)

𝐷(𝑥ூ , 𝑥௕)
  , 
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where 

𝐷(𝑥ூ , 𝑥௕) =  𝑃ଵ(𝑥ூ)𝑃ଶ(𝑥௕) − 𝑃ଵ(𝑥௕)𝑃ଶ(𝑥ூ). 

 

Thus, the solution for J(x) is: 

                                  𝐽(𝑥) =
௉మ(௫್)

஽(௫಺,௫್)
𝑃ଵ(𝑥) −

௉భ(௫್)

஽(௫಺,௫್)
 𝑃ଶ(𝑥).                     (A17) 

 

B. Derivation of 𝐿(𝑥) 

Consider now the corresponding problem for 𝐿(𝑥) which is given by: 

                                                  𝑇൫𝐿(𝑥)൯ = 0,     𝑥 ∈ ℜ                            (A18) 

𝐿(𝑥ூ) = 0 

𝐿(𝑥௕) = 1 

Applying the boundary conditions results in the following solutions for the constants:  

𝐶ଵ = −
𝑃ଶ(𝑥ூ)

𝐷(𝑥ூ , 𝑥௕)
 ,          𝐶ଶ =

𝑃ଵ(𝑥ூ)

𝐷(𝑥ூ , 𝑥௕)
  .  

Thus, the solution for 𝐿(𝑥) is: 

                          𝐿(𝑥) = −
௉మ(௫಺)

஽(௫಺,௫್)
𝑃ଵ(𝑥) +

௉భ(௫಺)

஽(௫಺,௫್)
 𝑃ଶ(𝑥)                       (A19) 

 

A2.3. Basic claims for linear homogeneous equations 

Consider now the following problem regarding a contingent claim 𝑁(𝑥): 

                                              𝑇൫𝑁(𝑥)൯ = 0,     𝑥 ∈ ℜ                                 (A20) 

𝑁(𝑥ூ) = 𝐴 

𝑁(𝑥௕) = 𝐵 

It can be easily shown that the solution of problem (A20) can be written in terms of the basic 

claims 𝐽(𝑥) and 𝐿(𝑥) in the following way: 

                                               𝑁(𝑥) = 𝐴  𝐽(𝑥) + 𝐵  𝐿(𝑥).                          (A21) 
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A2.4. Basic claims for non-homogeneous equations 

Consider now a more general contingent claim 𝑀(𝑥) which may pay 𝑔(𝑥) expressed by: 

                                           𝑇൫𝑀(𝑥)൯ + 𝑔(𝑥) = 0,     𝑥 ∈ ℜ                        (A22) 

𝑀(𝑥ூ) = 𝐴 

𝑀(𝑥௕) = 𝐵 

Since 𝑇(∙) is a linear differential operator then the general solution is given by the expression:  

                                                      𝑀(𝑥) = 𝑀௛(𝑥) + 𝑀௣(𝑥),                                    (A23) 

where 𝑀௛(𝑥) is a solution of a corresponding homogeneous problem  

𝑇൫𝑀௛(𝑥)൯ = 0 

(that is 𝑔(𝑥) = 0) and 𝑀௣(𝑥) is one solution of problem (A20). To find which boundary 

conditions 𝑀௛(𝑥) should satisfy notice that: 

𝑀௛(𝑥ூ) = 𝑀(𝑥ூ) − 𝑀௣(𝑥ூ) = 𝐴 − 𝑀௣(𝑥ூ) 

𝑀௛(𝑥௕) = 𝑀(𝑥௕) − 𝑀௣(𝑥௕) = 𝐵 − 𝑀௣(𝑥௕) 

The problem for 𝑀௛(𝑥) is in the form of problem (A20) and its solution is given by equation 

(A21). Thus, we obtain the solution:  

𝑀௛(𝑥) = ቀ𝐴 − 𝑀௣(𝑥ூ)ቁ 𝐽(𝑥) + ቀ𝐵 − 𝑀௣(𝑥௕)ቁ 𝐿(𝑥). 

As a result, the solution for the value of 𝑀(𝑥) is: 

                     𝑀(𝑥) = ቀ𝐴 − 𝑀௣(𝑥ூ)ቁ 𝐽(𝑥) + ቀ𝐵 − 𝑀௣(𝑥௕)ቁ 𝐿(𝑥) + 𝑀௣(𝑥).       (A24) 

Equation (A24) is general enough to value securities (equity, debt) and firm value prior to 

investment depending on the payment 𝑔(𝑥) (which define 𝑀௣(𝑥) for the particular claim) and 

the boundary values A and B. Note that for debt holders g(∙) is not a function of x.  

Appendix 3: Detailed proofs of security and firm valuation solutions 

A3.1. General solution of the problem 
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Consider the differential equation of the form: 

                                                𝑇൫𝑦(𝑥)൯ + 𝑎𝑥 + 𝑏 = 0,     𝑥 ∈ ℜ.                                  (A25) 

The general solution of this problem is given by  𝑦௚(𝑥) = 𝑦௛(𝑥) + 𝑦௣(𝑥), where 𝑦௛(𝑥) is a 

solution of  𝑇൫𝑦(𝑥)൯ = 0 and 𝑦௣(𝑥) (particular solution) is one solution of equation (A25). From 

equation (A13a) we have that 𝑦௛(𝑥) = 𝐶ଵ𝑃ଵ(𝑥) + 𝐶ଶ𝑃ଶ(𝑥). For the particular solution consider 

that  𝑦௣(𝑥) = 𝑘ଵ𝑥 + 𝑘ଶ. Then   𝑦௣
ᇱ (𝑥) = 𝑘ଵ  and 𝑦௣

ᇱᇱ(𝑥) = 0. Plugging in equation (A25) where 

𝑇(∙) is given by equation (A1) we get: 

−𝑞(𝑥 − 𝜃)𝑘ଵ − 𝑟(𝑘ଵ𝑥 + 𝑘ଶ) + 𝑎𝑥 + 𝑏 = 0. 

Rearranging the terms, one gets: 

(−(𝑞 + 𝑟)𝑘ଵ + 𝑎)𝑥 + 𝑞𝜃𝑘ଵ − 𝑟𝑘ଶ + 𝑏 = 0. 

This gives that: 

𝑘ଵ =
𝑎

𝑞 + 𝑟
 

and 

𝑘ଶ =
1

𝑟
൬

𝑞𝜗𝑎

𝑞 + 𝑟
+ 𝑏൰ 

Thus, the general solution of equation (A25) is given by:  

                                        𝑦௚(𝑥) = 𝐶ଵ𝑃ଵ(𝑥) + 𝐶ଶ𝑃ଶ(𝑥) +
௔

௤ା௥
𝑥 +

ଵ

௥
ቀ

௤ణ௔

௤ା௥
+ 𝑏ቁ              (A26) 

A3.2. Values after investment 

A3.2.1. Value of unlevered assets 

The value of unlevered assets after investment satisfies the following differential equation: 

                                                𝑇∗൫𝑈𝑎(𝑣)൯ + 𝑣(1 − 𝜏) = 0,     𝑣 ∈ ℜ.                          (A27) 

The general solution of equation A27 is given by equation (A26) with 𝑎 = 1 − 𝜏 and = 0 : 

                              𝑈𝑎(𝑣) = 𝐶ଵ𝑃ଵ(𝑣) + 𝐶ଶ𝑃ଶ(𝑣) +  ቂ
ଵ

௤ା௥
𝑣 +

௤ఏ∗

௥(௤ା௥)
ቃ (1 − 𝜏)               (A28) 
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The value of unlevered assets must also satisfy the following boundary conditions: 

                                                        lim
௩→±ஶ

𝑈𝑎(𝑣) = 𝑈𝑎௣(𝑣)                                         (A28) 

Equation (A13b) then suggests that 𝐶ଶ = 0 and equation (A13c) suggests that 𝐶ଵ = 0. Thus  

                                            𝑈𝑎(𝑣) = ቂ
ଵ

௤ା௥
𝑣 +

௤ఏ∗

௥(௤ା௥)
ቃ (1 − 𝜏)                                     (A29) 

𝑈𝑎(𝑣) can turn negative for sufficiently negative 𝑣. The value of 𝑣஺ at which the value of 

unlevered assets is zero is the solution of 𝑈𝑎(𝑣஺) = 0 which suggests that 𝑣஺ = −
௤ఏ∗

௥
 .  Since the 

value of unlevered assets is obtained (net of bankruptcy costs) by debt holders when the firm 

goes bankrupt at optimally determined 𝑣௅ we need to ensure that if 𝑣௅ < 𝑣஺ debt holders do not 

obtain a negative value and thus if 𝑣௅ < 𝑣஺,  𝑈𝑎(𝑣௅) is set to zero.  

A3.2.2. Equity value  

Equity value after investment satisfies the following differential equation: 

                                 𝑇∗൫𝐸𝑎(𝑣)൯ + (𝑣 − 𝑅଴−𝑅ଵ)(1 − 𝜏) = 0,     𝑣 ∈ ℜ                             (A30) 

The general solution of equation A30 is given by equation (A26) with 𝑎 = 1 − 𝜏 and 𝑏 = −(1 −

𝜏 )(𝑅଴+𝑅ଵ) : 

𝐸𝑎(𝑣) = 𝐶ଵ𝑃ଵ(𝑣) + 𝐶ଶ𝑃ଶ(𝑣) + ൬
1

𝑞 + 𝑟
𝑣 +

𝑞𝜃∗

𝑟(𝑞 + 𝑟)
−

𝑅଴+𝑅ଵ

𝑟
൰ (1 − 𝜏).  

                                                                                                                                    (A31) 

Equity must also satisfy 

                                                     lim
௩→ஶ

𝐸𝑎(𝑣) = 𝐸𝑎௣(𝑣)                                                     (A32) 

and 

                                                    𝐸𝑎(𝑣௅) = 0                                                                     (Α33) 

Equation (Α13d) suggests that 𝐶ଶ = 0 and by (A33) we obtain that  

𝐶ଵ = −
𝐸𝑎௣(𝑣௅)

𝑃ଵ(𝑣௅)
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Thus, we obtain that: 

                                                         𝐸𝑎(𝑣) = 𝐸𝑎௣(𝑣) − 𝐸𝑎௣(𝑣௅)
௉భ(௩)

௉భ(௩ಽ)
                  (A34) 

Setting 𝑣 = 𝑒𝑥 define 

                               𝐸෨𝑎(𝑥) = 𝐸𝑎(𝑒𝑥) = 𝐸𝑎௣(𝑒𝑥) − 𝐸𝑎௣(𝑣௅)
௉భ(௘௫)

௉భ(௩ಽ)
                        (A35) 

A3.2.3. Debt values 

Debt value after investment for the initial debt issued at time zero 𝐷𝑎଴(𝑣) and the second debt 

issued at the investment trigger 𝐷𝑎ଵ(𝑣) satisfy the following: 

                              𝑇∗൫𝐷𝑎௜(𝑣)൯ + 𝑅௜ = 0,        𝑖 = 0,1       𝑣 ∈ ℜ                            (A36) 

The general solution of equation (A36) is given by equation (A26) with 𝑎 = 0 and 𝑏 = 𝑅௜: 

𝐷𝑎௜(𝑣) = 𝐶ଵ𝑃ଵ(𝑣) + 𝐶ଶ𝑃ଶ(𝑣) + 
𝑅௜

𝑟
  

(A37) 

Debt must also satisfy two boundary conditions. The first one is given by: 

                                            lim
௩→ஶ

𝐷𝑎௜(𝑣) =
ோ೔

௥
                                                                    (A38) 

The second boundary depends on the priority structure. Under equal priority:   

                                                 𝐷𝑎௜(𝑣௅) = 𝛽௜  (1 − 𝑏) 𝑈𝑎(𝑣௅)                                         (A39) 

In the case the first creditors have secured priority to other creditors then the boundary 

conditions become: 

                 𝐷𝑎଴(𝑣௅) = 𝑚𝑖𝑛 ቔ(1 − 𝑏) 𝑈𝑎(𝑣௅),
ோబ

௥
ቕ                                              (A40) 

                𝐷𝑎ଵ(𝑣௅) = (1 − 𝑏) 𝑈𝑎(𝑣௅) − 𝐷𝑎଴(𝑣௅)) 

 

In the case that second debt holders have secured priority to other creditors then the boundary 

conditions become: 
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                        𝐷𝑎ଵ(𝑣௅) = 𝑚𝑖𝑛 ቔ(1 − 𝑏) 𝑈𝑎(𝑣௅),
ோభ

௥
ቕ                                        (A41) 

                       𝐷𝑎଴(𝑣௅) = (1 − 𝑏) 𝑈𝑎(𝑣௅) − 𝐷𝑎ଵ(𝑣௅)     

Equation (A36) combined with (A13d) suggests that 𝐶ଶ = 0. Thus 𝐷𝑎௜(𝑣) = 𝐶ଵ𝑃ଵ(𝑣) +
ோ೔

௥
. 

Depending on priority structure, applying boundary conditions (A39), (A40) or (A41) deduce 

that: 

𝐶ଵ =
𝐷𝑎௜(𝑣௅) −

𝑅௜

𝑟
𝑃ଵ(𝑣௅)

 

and thus  

                                   𝐷𝑎௜(𝑣) =
ோ೔

௥
+ ቀ𝐷𝑎௜(𝑣௅) −

ோ೔

௥
ቁ ቀ

௉భ(௩)

௉భ(௩ಽ)
ቁ                                    (A42) 

Setting 𝑣 = 𝑒𝑥 define 

                         𝐷෩𝑎௜(𝑥) = 𝐷𝑎௜(𝑒𝑥) =
ோ೔

௥
+ ቀ𝐷𝑎௜(𝑒𝑥௅) −

ோ೔

௥
ቁ ቀ

௉భ(௘௫)

௉భ(௘௫ಽ)
ቁ                     (A43) 

 

A3.3. Values before investment 

 

A3.3.1 Value Unlevered before investment 

 

Following similar arguments as the ones used to derive the value of unlevered assets after 

investment one can show that the value of unlevered assets before investment 𝑈𝑏(𝑥) is given by: 

                                 𝑈𝑏(𝑥) = ቂ
ଵ

௤ା௥
𝑥 +

௤ఏ

௥(௤ା௥)
ቃ (1 − 𝜏)                                                  (A44) 

To avoid negative liquidation values for initial debt holders at bankruptcy if 𝑥஻ < 𝑥஺  then  

𝑈𝑏(𝑥஻) = 0 where  𝑥஺ = −
௤ఏ

௥
 is the threshold where 𝑈𝑏(𝑥) becomes zero.  

 

A3.3.2. Debt value before investment 
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Debt 𝐷𝑏(𝑥) satisfies the following differential equation: 

                                                 𝑇൫𝐷𝑏(𝑥)൯ + 𝑅଴ = 0,               𝑥 ∈ ℜ                              (A45) 

The general solution of equation (A43) is given by equation (A26) with 𝑎 = 0 and 𝑏 = 𝑅଴: 

                                               𝐷𝑏(𝑥) = 𝐷𝑏௛(𝑥) +  
ோబ

௥
                                                 (A46) 

Debt before investment must also satisfy the following boundary conditions: 

                                                  𝐷𝑏(𝑥ூ) = 𝐷𝑎଴(𝑥ூ)         

𝐷𝑏(𝑥௕) = (1 − 𝑏) 𝑈𝑏(𝑥௕).        

Equation (A24) then suggests that the solution of the problem is given by: 

𝐷𝑏(𝑥) = ቀ𝐷𝑎଴(𝑥ூ) −
ோబ

௥
ቁ 𝐽(𝑥) + ൬(1 − 𝑏) 𝑈𝑏(𝑥௕) −

ோబ

௥
൰ 𝐿(𝑥) +

ோబ

௥
                     (A47) 

A3.3.3 Equity and firm value before investment 

The equity function before investment satisfies the following differential equation: 

                              𝑇൫𝐸𝑏(𝑥)൯ + (𝑥 − 𝑅଴)(1 − 𝜏) = 0,     𝑥 ∈ ℜ                           (A48) 

The general solution is given by equation (A26) with 𝑎 = 1 − 𝜏 and 𝑏 = −(1 − 𝜏 )𝑅଴ : 

𝐸𝑏(𝑥) = 𝐸𝑏௛(𝑥)   +  𝐸𝑏௣(𝑥) = 𝐶ଵ𝑃ଵ(𝑥) + 𝐶ଶ𝑃ଶ(𝑥) + ൬
1

𝑞 + 𝑟
𝑥 +

𝑞𝜃

𝑟(𝑞 + 𝑟)
−

𝑅଴

𝑟
൰ (1 − 𝜏)  

Equity should also satisfy the following boundary conditions: 

𝐸𝑏(𝑥ூ) = 𝐸𝑎(𝑣ூ) − 𝐼 + 𝐷𝑎ଵ(𝑣ூ) 

𝐸𝑏(𝑥௕) = 0    

Equation (A24) then implies that solution of the problem is:  

𝐸𝑏(𝑥) = ቀ𝐸𝑎(𝑣ூ) − 𝐼 + 𝐷𝑎ଵ(𝑣ூ) − 𝐸𝑏௣(𝑥ூ)ቁ 𝐽(𝑥) − 𝐸𝑏௣(𝑥௕) 𝐿(𝑥) + 𝐸𝑏௣(𝑥)      (A49) 

Note that with 𝑣ூ = 𝑒𝑥ூ this becomes:  

𝐸𝑏(𝑥) = ቀ𝐸𝑎(𝑒 𝑥ூ) − 𝐼 + 𝐷𝑎ଵ(𝑒 𝑥ூ) − 𝐸𝑏௣(𝑥ூ)ቁ 𝐽(𝑥) − 𝐸𝑏௣(𝑥௕) 𝐿(𝑥) + 𝐸𝑏௣(𝑥) 
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Firm value before investment is then given by the sum of equity plus debt after investment: 

                                      𝐹𝑏(𝑥) = 𝐸𝑏(𝑥) + 𝐷𝑏(𝑥)                                                       (A50) 

Appendix 4: Additional sensitivity results 

A.4.1. Additional sensitivity results of the main model with AMR 

Table A1 provides sensitivity results with respect to the volatility of earnings σ of the main model 

with mean reversion described in section 2. In Panel A, consistent with a real options explanation 

we observe that an increase in volatility results in a delay of the option to invest (𝑥ூ increases) and 

a delay in default decisions (𝑣௅ and 𝑥௕ thresholds decrease). In Panel B we observe that a higher 

earnings volatility has a U-shape effect on firm value (Fb(x)), decreases the value of unlevered 

assets (Ub(x)), results in a lower leverage ratio at t = 0 (Levb), lower net benefits of debt (NBb(x)) 

and decreases the expected present value of investment costs (Invb). The latter effect implies that 

investment is less likely to occur.  As expected, leverage decreases with volatility (see also Sarkar 

and Zapatero, 2003). Despite the decrease in leverage, credit spreads increase with σ. Higher 

volatility also reduces leverage ratios and has a positive impact on credit spreads at the investment 

trigger. With respect to leverage dynamics, we find when firms reach a stage of exercising their 

investment with no further options available leverage exhibits an increase relative to prior levels. 

Intuitively, at higher volatility, investment is triggered at a higher revenue level, which enables the 

firm to move to higher levels of leverage.  

We have also explored whether the above sensitivity results change when long-term profitability 

is different (results not shown for brevity). We find that when long-term profitability is high an 

increase in volatility reduces firm value. This is intuitive since higher volatility increases the 

likelihood of moving away from highly valuable prospects. The opposite result is obtained when 

long-term profitability is low in which case firm value becomes strictly increasing with volatility. 

This explains the U-shape observed in our base case (average) long-term profitability. Despite 

these differences with our base case, all other results remain when volatility is higher: the 

investment and default are delayed, leverage decreases, credit spreads increase and changes in 

leverage at the investment trigger relative to previous levels increase.   

[Insert Table A1 here] 



63 
 

Next we examine sensitivity results with respect to alternative priority rules of debt at default. 

Here, we focus only on the case of “me-first” priority for initial debt (see equations 10a and 10b) 

and contrast it with the results of equal priority used in our earlier analysis. Table A2 shows 

sensitivity with respect to the volatility of earnings using “me-first” priority. These results can be 

contrasted with those of Table 1 in the main text where a similar sensitivity was conducted with 

equal priority for debt holders.18  

                                                        [Insert Table A2 here] 

Compared to the case of equal priority (see Table 1, panel B) we observe a slight increase in firm 

value under a “me-first” priority rule for initial debt. This is like the result of Hackbarth and Mauer 

(2012) where they find that “me-first” results in higher values.19 The differences in firm value 

however under different priority rules is small. We observe a more significant conservatism of 

debt raised at t = 0 which can be seen by the lower initial coupon R0 and initial debt level raised at 

t = 0 under the “me-first” for initial debt compared to the case of equal priority. Instead, the firm 

under a “me-first” for initial debt priority rule preserves more financial flexibility to issue more 

debt when the investment is exercised. Indeed, R1 at the investment trigger is higher under “me-

first” compared to the case of equal priority. Despite the increase in the coupon of new debt, at the 

investment trigger the leverage ratios and overall credit spreads remain similar between the two 

priority rule cases. This is because there is a counterbalancing effect caused by lower initial 

leverage under “me-first” balancing out the higher subsequent R1 at the investment trigger. The 

initial conservatism in debt levels combined with higher protection for initial debt and more 

delayed default (see Panel A compared to the case of Table 1) results in a substantial decrease of 

initial (t = 0) credit spreads (relative to the equal priority rule of Table 1). With respect to other 

firm policies (see Panel A), we observe that under a “me-first” for initial debt priority rule the firm 

delays investment more (see also the lower expected investment cost incurred in Panel B). This 

underinvestment effect occurring under “me-first” confirms the results of Hackbarth and Mauer 

(2012) (see p.774) within a framework of mean reversion in earnings. We finally observe that the 

 
18 We have conducted extensive sensitivity across all parameters using a “me-first” priority rule for initial debt. Like 
Hackbarth and Mauer (2012) we find no significant differences in firm values or leverage ratios. Importantly, the 
predictions highlighted in the rest of the paper appear intact under a “me-first” priority rule. Thus, in the main text we 
discuss only the qualitative implications of the “me-first” compared to the equal priority rule.   
19 Hackbarth and Mauer (2012) also point out that a “me-first” priority rule results in solutions for firm value which 
is closer among all rules to the (ideal) optimal priority rule. 
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directional effects of volatility remain the same as in the case of equal priority. We note however 

the more pronounced increase in the leverage ratio at the last stage of investment (when no more 

growth options are available) relative to the initial leverage ratio under a “me-first” for initial debt 

compared to the equal priority case.  

 

A.4.2. Additional sensitivity results showing the U-shape of leverage with x 

We have investigated alternative parametrizations of the model and have found that the U-shape 

of leverage with profitability x is robust. Below we illustratively show that the U-shape holds also 

for low long-term profitability and when q is small. The latter case approximates the effect of 

profitability on leverage that one would expect for non-stationary firms 𝑞 → 0.  To confirm that 

the U-shape holds for non-stationary firms we have also implemented the Hackbarth and Mauer 

(2012) model with earnings following a GBM. The figure also shows that the U-shape exists for 

the case where the earnings process follows a GBM like in the model of Hackbarth and Mauer 

(2012). We have conducted several other sensitivity results within the Hackbarth and Mauer (2012) 

model showing that the U-shape applies for alternative parametrizations (results available upon 

request).  We find that the U-shape is less pronounced when the expansion factor of the option is 

high but still exists at high values of x. 

[Insert Figure A1] 

A.4.3. Single-stage model results showing a negative relation between leverage and x when x 

follows AMR 

To investigate the drivers of the U-shape we have run sensitivity results of the model assuming the 

absence of the growth option. This model is described in Sarkar and Zapatero (2003), however 

here we use AMR instead of GMR assumption. Our sensitivity results show (see below) show that 

the negative relation between leverage and x is retained at high x values. Overall, these results 

indicate that the presence of the growth option is the driver of the U-shape.  

[Insert Table A3 here] 


